436 resultados para Induced Exposure.
Resumo:
Background Artemisinin-combination therapy is a highly effective treatment for uncomplicated falciparum malaria but parasite recrudescence has been commonly reported following artemisinin (ART) monotherapy. The dormancy recovery hypothesis has been proposed to explain this phenomenon, which is different from the slower parasite clearance times reported as the first evidence of the development of ART resistance. Methods In this study, an existing P. falciparum infection model is modified to incorporate the hypothesis of dormancy. Published in vitro data describing the characteristics of dormant parasites is used to explore whether dormancy alone could be responsible for the high recrudescence rates observed in field studies using monotherapy. Several treatment regimens and dormancy rates were simulated to investigate the rate of clinical and parasitological failure following treatment. Results The model output indicates that following a single treatment with ART parasitological and clinical failures occur in up to 77% and 67% of simulations, respectively. These rates rapidly decline with repeated treatment and are sensitive to the assumed dormancy rate. The simulated parasitological and clinical treatment failure rates after 3 and 7 days of treatment are comparable to those reported from several field trials. Conclusions Although further studies are required to confirm dormancy in vivo, this theoretical study adds support for the hypothesis, highlighting the potential role of this parasite sub-population in treatment failure following monotherapy and reinforcing the importance of using ART in combination with other anti-malarials.
Resumo:
In this paper, we distinguish between factor/output substitution and shifts in the production technology frontier. Our model includes the by-products of carbon dioxide and sulfur dioxide emissions where the function requires the simultaneous expansion of good outputs and reductions in emissions. We estimate a directional output distance function for 80 countries over the period 1971-2000 to measure the exogenous and oil price-induced technological change. On average, we find substantial oil price-induced technological progress at the world level when long-term oil prices are rising, although the growth rate is more volatile in developed countries than in developing countries. The results also show that developed countries experience higher exogenous technological progress in comparison with developing countries, and the gap between the two has increased during the period of our study.
Resumo:
We analyze how changes in trade openness are related to induced technological innovations that are not only GDP increasing but also pollution saving. Our model includes by-products of carbon dioxide and sulfur dioxide emissions. We estimate a directional distance function for 76 countries over the period 1963-2000 to measure exogenous and trade-induced technological change. On average, we find substantial trade-induced technological progress, and its magnitude is about one third of the overall technological change. The trade-induced technological changes, however, are GDP reducing and pollution increasing. Empirically, we find that increased trade openness correlates to increased pollution.
Resumo:
Metarhizium anisopliae is a well-characterized biocontrol agent of a wide range of insects including cane grubs. In this study, a two-dimensional (2D) electrophoresis was used to display secreted proteins of M. anisopliae strain FI-1045 growing on the whole greyback cane grubs and their isolated cuticles. Hydrolytic enzymes secreted by M. anisopliae play a key role in insect cuticle-degradation and initiation of the infection process. We have identified all the 101 protein spots displayed by cross-species identification (CSI) from the fungal kingdom. Among the identified proteins were 64-kDa serine carboxypeptidase, 1,3 beta-exoglucanase, Dynamin GTPase, THZ kinase, calcineurin like phosphoesterase, and phosphatidylinositol kinase secreted by M. ansiopliae (FI-1045) in response to exposure to the greyback cane grubs and their isolated cuticles. These proteins have not been previously identified from the culture supernatant of M. anisopliae during infection. To our knowledge, this the first proteomic map established to study the extracellular proteins secreted by M. ansiopliae (FI-1045) during infection of greyback cane grubs and its cuticles.
Resumo:
Even though heatwave events have become more frequent and intense in most regions around the world, little is known about the impact of heatwave on birth outcomes. This thesis uses a population-based study design to investigate the relationship between maternal heatwave exposure and adverse birth outcomes in Brisbane, Australia. This study found that heatwave exposure at any stage of pregnancy can be harmful to fetal growth, and further increase the risk of adverse birth outcomes. Both short- and long-term effects of heatwave on adverse birth outcomes were found. The findings in this thesis may have significant public health implications.
Resumo:
This thesis focuses on the development of a humanised mouse model to investigate human breast cancer metastasis to bone, an incurable disease presenting a major medical challenge in our society. The method is based on tissue-engineered constructs with human cells that generate a human bone-like organ within mice. This novel platform is further applied to mimic human-specific mechanisms of breast cancer metastasis and growth in human bone, and in particular the role of specific cell adhesion molecules in this process is closely investigated.
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.
Resumo:
Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3 °S), Brisbane (27.5 °S), Canberra (35.3 °S) and Hobart (42.8 °S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median=1.1, IQR: 0.5–2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r=0.23, p<0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r=0.50) and at high latitudes (Hobart, r=0.50; Canberra, r=0.39), to null or even slightly negative correlations, in summer (r=0.01) and at low latitudes (Townsville, r=-0.06; Brisbane, r=-0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.
Resumo:
Suspected nephrocarcinogenic effects of trichloroethene (TRI) in humans are attributed to metabolites derived from the glutathione transferase (GST) pathway. The influence of polymorphisms of GSTM1 and GSTT1 isoenzymes on the risk of renal cell cancer in subjects having been exposed to high levels of TRI over many years was investigated. GSTM1 and GSTT1 genotypes were determined by internal standard controlled polymerase chain reaction. Fourty-five cases with histologically verified renal cell cancer and a history of long-term occupational exposure to high concentrations of TRI were studied. A reference group consisted of 48 workers from the same geographical region with similar histories of occupational exposures to TRI but not suffering from any cancer. Among the 45 renal cell cancer patients, 27 carried at least one functional GSTM1 (GSTM1 +) and 18 at least one functional GSTT1 (GSTT1 +). Among the 48 reference workers, 17 were GSTM1 + and 31 were GSTT1 +. Odds ratios for renal cell cancer were 2.7 for GSTM1 + individuals (95% CI, 1.18-6.33; P < 0.02) and 4.2 for GSTT1 + individuals (95% CI, 1.16-14.91; P < 0.05), respectively. The data support the present concept of the nephrocarcinogenicity of TRI.
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
In general, the biological activation of nephrocarcinogenic chlorinated hydrocarbons proceeds via conjugatiton with glutathione. It has mostly been assamed that the main site of initial conjugation is the liver, followed by a mandatory transfer of intermediates to the kidney. It was therefore of interest to study the enzyme activities of subgroups of glutathione transferases (GSTs) in renal cancers and the surrounding normal renal tissues of the same individuals (n = 21). For genotyping the individuals with respect to known polymorphic GST isozymes the following substrates with differential specificity were used: 1-chloro-2,4-dinitrobenzene for overall GST activity (except GST θ); 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole for GST α; 1,2-dichloro-4-nitro-benzene for GST μ; ethacrynic acid and 4-vinylpyridine for GST π; and methyl chloride for GST θ. In general, the normal tissues were able to metabolize the test substrates. A general decrease in individual GST enzyme activities was apparent in the course of cancerization, and in some (exceptional) cases individual activities, expressed in the normal renal tissue, were lost in the tumour tissue. The GST enzyme activities in tumours were independent of tumour stage, or the age and gender of the patients. There was little influence of known polymorphisms of GSTM1, GSTM3 and GSTP1 upon the activities towards the test substrates, whereas the influence of GSTT1 polymorphism on the activity towads methyl chloride was straightforward. In general, the present findings support the concept that the initial GST-dependent bioactivation step of nephrocarcinogenic chlorinated hydrocarbons may take place in the kidney itself. This should be a consideration in toxicokinetic modelling.