545 resultados para Flux growth
Resumo:
Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.
Resumo:
One-dimensional ZnO nanostructures were successfully synthesized on single-crystal silicon substrates via a simple thermal evaporation and vapour-phase transport method under different process temperatures from 500 to 1000 °C. The detailed and in-depth analysis of the experimental results shows that the growth of ZnO nanostructures at process temperatures of 500, 800, and 1000 °C is governed by different growth mechanisms. At a low process temperature of 500 °C, the ZnO nanostructures feature flat and smooth tips, and their growth is primarily governed by the vapour-solid mechanism. At an intermediate process temperature of 800 °C, the ZnO nanostructures feature cone-shape tips, and their growth is primarily governed by the self-catalyzed and saturated vapour–liquid–solid mechanism. At a high process temperature of 1000 °C, the alloy tip appears on the front side of the ZnO nanostructures, and their growth is primarily governed by the common catalyst-assisted vapour–liquid–solid mechanism. It is also shown that the morphological, structural, optical, and compositional properties of the synthesized ZnO nanostructures are closely related to the process temperature. These results are highly relevant to the development of light-emitting diodes, chemical sensors, energy conversion devices, and other advanced applications.
Resumo:
Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies. © 2007 American Institute of Physics.
Resumo:
Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.
Resumo:
The formation of vertically aligned, clearly separated, copper-capped carbon nanocones with a length of up to 500 nm and base diameter of about 150 nm via three-stage process involving magnetron sputtering, N2 plasma treatment, and CH4 + N2 plasma growth is studied. The width of gaps between the nanocones can be controlled by the gas composition. The nanocone formation mechanism is explained in terms of strong passivation of carbon in narrow gaps, where the access of plasma ions is hindered and the formation of large Cn H2n+2 molecules is possible. This plasma-enabled approach can be used to fabricate nanoelectronic, nanofluidic, and optoelectronic components and devices. © 2010 American Institute of Physics.
Resumo:
It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures. © 2008 American Institute of Physics.
Resumo:
A mechanism and model for the vertical growth of platelet-structured vertically aligned single-crystalline carbon nanostructures by the formation of graphene layers on a flat top surface are proposed and verified experimentally. It is demonstrated that plasma-related effects lead to self-sharpening of tapered nanocones to form needlelike nanostructures, in a good agreement with the predicted dependence of the radius of a nanocone's flat top on the incoming ion flux and surface temperature. The growth mechanism is relevant to a broad class of nanostructures including nanotips, nanoneedles, and nanowires and can be used to improve the predictability of nanofabrication processes. © 2007 American Institute of Physics.
Resumo:
Large-scale (∼109 atoms) numerical simulations reveal that plasma-controlled dynamic delivery and redistribution of carbon atoms between the substrate and nanotube surfaces enable the growth of ultralong single walled carbon nanotubes (SWCNTs) and explain the common experimental observation of slower growth at advanced stages. It is shown that the plasma-based processes feature up to two orders of magnitude higher growth rates than equivalent neutral-gas systems and are better suited for the SWCNT synthesis at low nanodevice friendly temperatures. © 2008 American Institute of Physics.
Resumo:
The possibility of independent control of the surface fluxes of energy and hydrogen-containing radicals, thus enabling selective control of the nanostructure heating and passivation, is demonstrated. In situ energy flux measurements reveal that even a small addition of H2 to low-pressure Ar plasmas leads to a dramatic increase in the energy deposition through H recombination on the surface. The heat release is quenched by a sequential addition of a hydrocarbon precursor while the surface passivation remains effective. Such selective control offers an effective mechanism for deterministic control of the growth shape, crystallinity, and density of nanostructures in plasma-aided nanofabrication. © 2010 American Institute of Physics.
Resumo:
The self-organized growth of uniform carbon nanocone arrays using low-temperature non-equilibrium Ar + H 2 + CH 4 plasma-enhanced chemical vapor deposition (PECVD) is studied. The experiment shows that size-, shape-, and position-uniform carbon nanocone arrays can develop even from non-uniformly fragmented discontinuous nickel catalyst films. A three-stage scenario is proposed where the primary nanocones grow on large catalyst particles during the first stage, and the secondary nanocones are formed between the primary ones at the second stage. Finally, plasma-related effects lead to preferential growth of the secondary nanocones and eventually a uniform nanopattern is formed. This does not happen in a CVD process with the same gas feedstock and surface temperature. The proposed three-stage growth scenario is supported by the numerical experiment which generates nanocone arrays very similar to the experimentally synthesized nanopatterns. The self-organization process is explained in terms of re-distribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array. Our results suggest that plasma-related self-organization effects can significantly reduce the non-uniformity of carbon nanostructure arrays which commonly arises from imperfections in fragmented Ni-based catalyst films.
Resumo:
The results of large-scale (∼109 atoms) numerical simulations of the growth of different-diameter vertically-aligned single-walled carbon nanotubes in plasma systems with different sheath widths and in neutral gases with the same operating parameters are reported. It is shown that the nanotube lengths and growth rates can be effectively controlled by varying the process conditions. The SWCNT growth rates in the plasma can be up to two orders of magnitude higher than in the equivalent neutral gas systems. Under specific process conditions, thin SWCNTs can grow much faster than their thicker counterparts despite the higher energies required for catalyst activation and nanotube nucleation. This selective growth of thin SWCNTs opens new avenues for the solution of the currently intractable problem of simultaneous control of the nanotube chirality and length during the growth stage.
Resumo:
The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.
Resumo:
The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (≤1000 K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.
Resumo:
Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.
Resumo:
This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.