364 resultados para Dental applications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Expenditure on dental and oral health services in Australia is $3.4 billion AUD annually. This is the sixth highest health cost and accounts for 7 % of total national health expenditure. Approximately 49 % of Australian children aged 6 years have caries experience in their deciduous teeth and this is rising. The aetiology of dental caries involves a complex interplay of individual, behavioural, social, economic, political and environmental conditions, and there is increasing interest in genetic predisposition and epigenetic modification. Methods The Oral Health Sub-study; a cross sectional study of a birth cohort began in November 2012 by examining mothers and their children who were six years old by the time of initiation of the study, which is ongoing. Data from detailed questionnaires of families from birth onwards and data on mothers’ knowledge, attitudes and practices towards oral health collected at the time of clinical examination are used. Subjects’ height, weight and mid-waist circumference are taken and Body Mass Index (BMI) computed, using an electronic Bio-Impedance balance. Dental caries experience is scored using the International Caries Detection and Assessment System (ICDAS). Saliva is collected for physiological measures. Salivary Deoxyribose Nucleic Acid (DNA) is extracted for genetic studies including epigenetics using the SeqCap Epi Enrichment Kit. Targets of interest are being confirmed by pyrosequencing to identify potential epigenetic markers of caries risk. Discussion This study will examine a wide range of potential determinants for childhood dental caries and evaluate inter-relationships amongst them. The findings will provide an evidence base to plan and implement improved preventive strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considered to be the next generation of heat transfer fluids, nanofluids have been receiving a growing amount of attention in the past decade despite the controversy and inconsistencies that have been reported. Nanofluids have great potential in a wide range of fields, particularly for solar thermal applications. This paper presents a comprehensive review of the literature on the enhancements in thermophysical and rheological properties resulting from experimental works conducted on molten salt nanofluids that are used in solar thermal energy systems. It was found that an increase in specific heat of 10–30% was achieved for most nanofluids and appeared independent of particle size and to an extent mass concentration. The specific heat increase was attributed to the formation of nanostructures at the solid–liquid interface and it was also noted that the aggregation of nanoparticles has detrimental effects on the specific heat increase. Thermal conductivity was also found to increase, though less consistently, ranging from 3% to 35%. Viscosity was seen to increase with the addition of nanoparticles and is dependent on the amount of aggregation of the particles. An in-depth micro level analysis of the mechanisms behind the thermophysical property changes is presented in this paper. In addition, possible trends are discussed relating to current theorised mechanisms in an attempt to explain the behaviour of molten salt nanofluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel programming and effective partitioning of applications for embedded many-core architectures requires optimization algorithms. However, these algorithms have to quickly evaluate thousands of different partitions. We present a fast performance estimator embedded in a parallelizing compiler for streaming applications. The estimator combines a single execution-based simulation and an analytic approach. Experimental results demonstrate that the estimator has a mean error of 2.6% and computes its estimation 2848 times faster compared to a cycle accurate simulator.