763 resultados para Composite models
Resumo:
Ocean processes are complex and have high variability in both time and space. Thus, ocean scientists must collect data over long time periods to obtain a synoptic view of ocean processes and resolve their spatiotemporal variability. One way to perform these persistent observations is to utilise an autonomous vehicle that can remain on deployment for long time periods. However, such vehicles are generally underactuated and slow moving. A challenge for persistent monitoring with these vehicles is dealing with currents while executing a prescribed path or mission. Here we present a path planning method for persistent monitoring that exploits ocean currents to increase navigational accuracy and reduce energy consumption.
Resumo:
Motorcycles are overrepresented in road traffic crashes and particularly vulnerable at signalized intersections. The objective of this study is to identify causal factors affecting the motorcycle crashes at both four-legged and T signalized intersections. Treating the data in time-series cross-section panels, this study explores different Hierarchical Poisson models and found that the model allowing autoregressive lag 1 dependent specification in the error term is the most suitable. Results show that the number of lanes at the four-legged signalized intersections significantly increases motorcycle crashes largely because of the higher exposure resulting from higher motorcycle accumulation at the stop line. Furthermore, the presence of a wide median and an uncontrolled left-turn lane at major roadways of four-legged intersections exacerbate this potential hazard. For T signalized intersections, the presence of exclusive right-turn lane at both major and minor roadways and an uncontrolled left-turn lane at major roadways of T intersections increases motorcycle crashes. Motorcycle crashes increase on high-speed roadways because they are more vulnerable and less likely to react in time during conflicts. The presence of red light cameras reduces motorcycle crashes significantly for both four-legged and T intersections. With the red-light camera, motorcycles are less exposed to conflicts because it is observed that they are more disciplined in queuing at the stop line and less likely to jump start at the start of green.
Resumo:
Motorcyclists are the most crash-prone road-user group in many Asian countries including Singapore; however, factors influencing motorcycle crashes are still not well understood. This study examines the effects of various roadway characteristics, traffic control measures and environmental factors on motorcycle crashes at different location types including expressways and intersections. Using techniques of categorical data analysis, this study has developed a set of log-linear models to investigate multi-vehicle motorcycle crashes in Singapore. Motorcycle crash risks in different circumstances have been calculated after controlling for the exposure estimated by the induced exposure technique. Results show that night-time influence increases crash risks of motorcycles particularly during merging and diverging manoeuvres on expressways, and turning manoeuvres at intersections. Riders appear to exercise more care while riding on wet road surfaces particularly during night. Many hazardous interactions at intersections tend to be related to the failure of drivers to notice a motorcycle as well as to judge correctly the speed/distance of an oncoming motorcycle. Road side conflicts due to stopping/waiting vehicles and interactions with opposing traffic on undivided roads have been found to be as detrimental factors on motorcycle safety along arterial, main and local roads away from intersections. Based on the findings of this study, several targeted countermeasures in the form of legislations, rider training, and safety awareness programmes have been recommended.
Resumo:
Traditional crash prediction models, such as generalized linear regression models, are incapable of taking into account the multilevel data structure, which extensively exists in crash data. Disregarding the possible within-group correlations can lead to the production of models giving unreliable and biased estimates of unknowns. This study innovatively proposes a -level hierarchy, viz. (Geographic region level – Traffic site level – Traffic crash level – Driver-vehicle unit level – Vehicle-occupant level) Time level, to establish a general form of multilevel data structure in traffic safety analysis. To properly model the potential cross-group heterogeneity due to the multilevel data structure, a framework of Bayesian hierarchical models that explicitly specify multilevel structure and correctly yield parameter estimates is introduced and recommended. The proposed method is illustrated in an individual-severity analysis of intersection crashes using the Singapore crash records. This study proved the importance of accounting for the within-group correlations and demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in modeling multilevel structure of traffic crash data.
Resumo:
A total histological grade does not necessarily distinguish between different manifestations of cartilage damage or degeneration. An accurate and reliable histological assessment method is required to separate normal and pathological tissue within a joint during treatment of degenerative joint conditions and to sub-classify the latter in meaningful ways. The Modified Mankin method may be adaptable for this purpose. We investigated how much detail may be lost by assigning one composite score/grade to represent different degenerative components of the osteoarthritic condition. We used four ovine injury models (sham surgery, anterior cruciate ligament/medial collateral ligament instability, simulated anatomic anterior cruciate ligament reconstruction and meniscal removal) to induce different degrees and potentially 'types' (mechanisms) of osteoarthritis. Articular cartilage was systematically harvested, prepared for histological examination and graded in a blinded fashion using a Modified Mankin grading method. Results showed that the possible permutations of cartilage damage were significant and far more varied than the current intended use that histological grading systems allow. Of 1352 cartilage specimens graded, 234 different manifestations of potential histological damage were observed across 23 potential individual grades of the Modified Mankin grading method. The results presented here show that current composite histological grading may contain additional information that could potentially discern different stages or mechanisms of cartilage damage and degeneration in a sheep model. This approach may be applicable to other grading systems.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
Resumo:
There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.