378 resultados para BAND-STRUCTURE
Resumo:
We have studied the molecular structure of the mineral glaucocerinite (Zn,Cu)5Al3(SO4)1.5(OH)16�9(H2O) using a combination of Raman and infrared spectroscopy. The mineral is one of the hydrotalcite supergroup of natural layered double hydroxides. The Raman spectrum is characterised by an intense Raman band at 982 cm�1 with a low intensity band at 1083 cm�1. These bands are attributed to the sulphate symmetric and antisymmetric stretching mode. The infrared spectrum is quite broad with a peak at 1020 cm�1. A series of Raman bands at 546, 584, 602, 625 and 651 cm�1 are assigned to the m4 (SO4)2� bending modes. The observation of multiple bands provides evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 762 cm�1 is attributed to a hydroxyl deformation mode associated with AlOH units. Vibrational spectroscopy enables aspects of the molecular structure of glaucocerinite to be determined.
Resumo:
Vibrational spectroscopy has been used to study the rare earth mineral churchite of formula (REE)(PO4)-⋅2H2O. The mineral contains a range of rare earth metals including yttrium depending on the locality. The Raman spectra of churchite-(REE) are characterized by an intense sharp band at 984 cm-1 assigned to the v1 (PO¾-) symmetric stretching mode. A lower intensity band observed at around 1067 cm-1 is attributed to the v3 (PO¾-) antisymmetric stretching mode. The (PO¾-) bending modes are observed at 497 cm-1 (v2) and 565 cm-1(v4). Raman bands at 649 and 681 cm-1 are assigned to water librational modes. Vibrational spectroscopy enables aspects of the structure of churchite to be ascertained.
Resumo:
We have studied the hydrated hydroxyl silicate mineral inesite of formula Ca2(Mn,Fe)7Si10O28(OH)⋅5H2O using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. SEM analysis shows the mineral to be a pure monomineral with no impurities. Semiquantitative analysis shows a homogeneous phase, composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cm-1 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. Infrared bands found at 896, 928, 959 and 985 cm-1 are attributed to the OSiO antisymmetric stretching vibrations. An intense broad band at 653 cm-1 with shoulder bands at 608, 631 and 684 cm-1 are associated with the bending modes of the OSiO units of the 6- and 8-membered rings of the [Si10O28] units. The sharp band at 3642 cm-1 with shoulder bands at 3612 and 3662 cm-1 are assigned to the OH stretching vibrations of the hydroxyl units. The broad Raman band at 3420 cm-1 with shoulder bands at 3362 and 3496 cm-1 are assigned to the water stretching vibrations. The application of vibrational spectroscopy has enabled an assessment of the molecular structure of inesite to be undertaken.
Resumo:
We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed.
Resumo:
The structure of several carboxy-substituted hexahydro-1,4:5,8-diepoxynaphthalenes have been solved with X-ray crystallography, in some cases confirming previously contentious structures. The compounds of interest are constructed in efficient one-step 2 × [4+2] cycloaddition reactions from furan and acetylene carboxylate derivatives.
Resumo:
The ion (C2CHC2)(-) is formed in the gas phase by the process -C=C-CH(OCOR)-C=CD --> (C2CHC2)(-) + ('RDCO2') [R = H, Me or Et]; the ground state structure is a singlet, with C-2 nu symmetry.
Resumo:
Titanium oxide films with trilayer structure grown on fluorine doped tin oxide substrate were prepared from one-step hydrothermal process. The trilayer structure consists of microflowers, nanorod array and compact nanoparticulates, which is expected to possess the merits of good light harvesting, a high electron transport rate, while avoiding the issues of electron shunting. The photovoltaic performance was comprehensively studied and a 60% enhancement in short circuit photocurrent density was found from microflowers contribution as a light scattering layer. This unique trilayer structure exhibits great potential application in future dye-sensitized solar cells.
Resumo:
A pulsed wall jet has been used to simulate the gust front of a thunderstorm downburst. Flow visualization, wind speed and surface pressure measurements were obtained. The characteristics of the hypothesized ring vortex of a full-scale downburst were reproduced at a scale estimated to be 1:3000.
Resumo:
Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.
Resumo:
Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.
Resumo:
It has been predicted that sea level will rise about 0.8 m by 2100. Consequently, seawater can intrude into the coastal aquifers and change the level of groundwater table. A raise in groundwater table due to seawater intrusion threats the coastal infrastructure such as road pavements. The mechanical properties of subgrade materials will change due to elevated rise of groundwater table, leading to pavement weakening and decreasing the subgrade strength and stiffness. This paper presents an assessment of the vulnerability of subgrade in coastal areas to change in groundwater table due to sea-level rise. A simple bathtub approach is applied for estimating the groundwater level changes according to sea-level rise. Then the effect of groundwater level changes on the soil water content (SWC) of a single column of fine-sand soil is simulated using MIKE SHE. The impact of an increase in moisture content on subgrade strength/stiffness is assessed for a number of scenarios.
Resumo:
Fluid–Structure Interaction (FSI) problem is significant in science and engineering, which leads to challenges for computational mechanics. The coupled model of Finite Element and Smoothed Particle Hydrodynamics (FE-SPH) is a robust technique for simulation of FSI problems. However, two important steps of neighbor searching and contact searching in the coupled FE-SPH model are extremely time-consuming. Point-In-Box (PIB) searching algorithm has been developed by Swegle to improve the efficiency of searching. However, it has a shortcoming that efficiency of searching can be significantly affected by the distribution of points (nodes in FEM and particles in SPH). In this paper, in order to improve the efficiency of searching, a novel Striped-PIB (S-PIB) searching algorithm is proposed to overcome the shortcoming of PIB algorithm that caused by points distribution, and the two time-consuming steps of neighbor searching and contact searching are integrated into one searching step. The accuracy and efficiency of the newly developed searching algorithm is studied on by efficiency test and FSI problems. It has been found that the newly developed model can significantly improve the computational efficiency and it is believed to be a powerful tool for the FSI analysis.