537 resultados para American socialist society.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unimolecular reactivities of a range of perbenzoate anions (X-C6H5CO3-), including the perbenzoate anion itself (X=H), nitroperbenzoates (X=para-, meta-, ortho-NO2), and methoxyperbenzoates (X=para-, meta-OCH3) were investigated in the gas phase by electrospray ionization tandem mass spectrometry. The collision-induced dissociation mass spectra of these compounds reveal product ions consistent with a major loss of carbon dioxide requiring unimolecular rearrangement of the perbenzoate anion prior to fragmentation. Isotopic labeling of the perbenzoate anion supports rearrangement via an initial nucleophilic aromatic substitution at the ortho carbon of the benzene ring, while data from substituted perbenzoates indicate that nucleophilic attack at the ipso carbon can be induced in the presence of electron-withdrawing moieties at the ortho and para positions. Electronic structure calculations carried out at the B3LYP/6311++G(d,p) level of theory reveal two competing reaction pathways for decarboxylation of perbenzoate anions via initial nucleophilic substitution at the ortho and ipso positions, respectively. Somewhat surprisingly, however, the computational data indicate that the reaction proceeds in both instances via epoxidation of the benzene ring with decarboxylation resulting-at least initially-in the formation of oxepin or benzene oxide anions rather than the energetically favored phenoxide anion. As such, this novel rearrangement of perbenzoate anions provides an intriguing new pathway for epoxidation of the usually inert benzene ring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio– and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15 % yields, respectively. X-Ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphonamide, -thiophosphinamide and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, open circuit Bayer refineries pump seawater directly into their operations to neutralize the caustic fraction of the Bayer residue. The resulting supernatant has a reduced pH and is pumped back to the marine environment. This investigation has assessed modified seawater sources generated from nanofiltration processes to compare their relative capacities to neutralize bauxite residues. An assessment of the chemical stability of the neutralization products, neutralization efficiency, discharge water quality, bauxite residue composition, and associated economic benefits have been considered to determine the most preferable seawater filtration process based on implementation costs, savings to operations and environmental benefits. The mechanism of neutralization for each technology was determined to be predominately due to the formation of Bayer hydrotalcite and calcium carbonate, however variations in neutralization capacity and efficiencies have been observed. The neutralization efficiency of each feed source has been found to be dependent on the concentration of magnesium, aluminium, calcium and carbonate. Nanofiltered seawater with approximately double the amount of magnesium and calcium required half the volume of seawater to achieve the same degree of neutralization. These studies have revealed that multiple neutralization steps occur throughout the process using characterization techniques such as X-ray diffraction (XRD), infrared (IR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A general chemo-enzymatic process has been developed to prepare enantiomerically pure L- and D-amino acids in high yield by deracemisation of racemic starting materials. The method has been developed from initial academic studies to be a robust, scalable industrial process. Unnatural amino acids, in high optical purity, are a rapidly growing class of intermediates required for pharmaceuticals, agrochemicals and other fine chemical applications. However, no single method has proven sufficiently adaptable to prepare these compounds generally at large scale. Our approach uses an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of > 99 % from a starting racemate, and product yields over 90 %. The current approach compares very favourably to resolution methods which have a maximum single pass yield of 50 %. Efficient methods have been developed to adapt the biocatalyst used in this process towards new target compounds and to optimise key factors which improve the process efficiency and offer competitive economics at scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to determine the threshold of exercise energy expenditure necessary to change blood lipid and lipoprotein concentrations and lipoprotein lipase activity (LPLA) in healthy, trained men. On different days, 11 men (age, 26.7 +/- 6.1 yr; body fat, 11.0 +/- 1.5%) completed four separate, randomly assigned, submaximal treadmill sessions at 70% maximal O-2 consumption. During each session 800, 1,100, 1,300, or 1,500 kcal were expended. Compared with immediately before exercise, high-density lipoprotein cholesterol (HDL-C) concentration was significantly elevated 24 h after exercise (P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated (P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 h before exercise, LPLA. was significantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions and remained elevated 48 h after exercise in the 1,500-kcal session. These data indicate that, in healthy, trained men, 1,100 kcal of energy expenditure are necessary to elicit increased HDL-C concentrations. These HDL-C changes coincided with increased LPLA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The utility of GATA3 as a marker for metastatic breast carcinoma in serous effusion specimens was investigated. Methods Cell block sections from 74 serous effusion specimens (32 ascitic, 2 pericardial and 40 pleural fluids) were stained with an anti-GATA3 murine monoclonal antibody. The specimens included 62 confirmed metastatic carcinomas from breast (30), female genital tract (13), gastrointestinal tract (7), lung adenocarcinoma (9), pancreas (1), kidney (1) and bladder (1). The breast carcinoma cases included 15 ductal carcinomas, 8 lobular carcinomas and in 7 the histology sub-type was not available. Twelve cases containing florid reactive mesothelial cells were also stained. The breast carcinoma cases were also stained for mammaglobin and GCDFP-15 to compare sensitivity with GATA3. Results Positive nuclear staining for GATA3 was present in 90% (27/30) of metastatic breast carcinoma specimens. All non-breast metastatic carcinomas tested were negative with the exception of the single case of metastatic urothelial carcinoma. No staining was observed in any of the benign reactive cases or in benign mesothelial cells present in the malignant cell block preparations. Two cases showed weak positivity of benign lymphoid cells. Staining results were unambiguous as all positive cases showed intense nuclear staining in >50% of tumor cells. Mammaglobin (57%; 17/30) and GCDFP-15 (33%; 10/30) were less sensitive markers of breast carcinoma. If used in a panel, mammaglobin and GCFP-15 staining would have identified only one additional case to those stained with GATA3. Conclusions GATA3 may be a useful addition to immunostaining panels for serous effusion specimens when metastatic breast carcinoma is a consideration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a continuous quest for developing electrochromic (EC)transition metal oxides (TMOs) with increased coloration efficiency. As emerging TMOs, Nb2O5 films, even those of ordered anodized nanochannels, have failed to produce the required EC performance for practical applications. This is attributed to limitations presented by its relatively wide bandgap and low capacity for accommodating ions. To overcome such issues, MoO3 was electrodeposited onto Nb2O5 nanochannelled films as homogeneously conformal and stratified α-MoO3 coatings of different thickness. The EC performance of the resultant MoO3 coated Nb2O5 binary system was evaluated. The system exhibited a coloration efficiency of 149.0 cm2 C−1, exceeding that of any previous reports on MoO3 and Nb2O5 individually or their compounds. The enhancement was ascribed to a combination of the reduced effective bandgap of the binary system, the increased intercalation probability from the layered α-MoO3 coating, and a high surface-tovolume ratio, while the Nb2O5 nanochannelled templates provided stability and low impurity pathways for charge transfer to occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a tunable alternating current electrohydrodynamic (ac-EHD) force which drives lateran fluid motion within a few nanometers of an electrode surface. Because the magnitude of this fluid shear force can be tuned externally (e.g., via the application of an ac electric field), it provides a new capability to physically displace weakly (nonspecifically) bound cellular analytes. To demonstrate the utility of the tunable nanoshearing phenomenon, we present data on purpose-built microfluidic devices that employ ac-EHD force to remove nonspecific adsorption of molecular and cellular species. Here, we show that an ac-EHD device containing asymmetric planar and microtip electrode pairs resulted in a 4-fold reduction in nonspecific adsorption of blood cells and also captured breast cancer cells in blood, with high efficiency (approximately 87%) and specificity. We therefore feel that this new capability of externally tuning and manipulating fluid flow could have wide applications as an innovative approach to enhance the specific capture of rare cells such as cancer cells in blood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this Letter a hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line is proposed. A family of spatially varying slip lengths in the Navier slip law recovers the results of past formulations for slip in continuum theories and molecular dynamics simulations and is consistent with well-established experimental observations of complete wetting. This formulation gives a general approach for continuum hydrodynamic theories. New fluid flow behaviors are also predicted yet to be seen in experiment. © 2013 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. © 2012 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.