437 resultados para Active testing
Resumo:
Drawing upon an action learning perspective, we hypothesized that a leader’s learning of project leadership skills would be related to facilitative leadership, team reflexivity, and team performance. Secondly, we proposed that new and experienced leaders would differ in the amount they learn from their current and recent experience as project managers, and in the strength of the relationship between their self-reported learning, facilitative leadership, and team reflexivity. We conducted a 1-year longitudinal study of 50 R&D teams, led by 25 new and 25 experienced leaders, with 313 team members and 22 project customers, collecting both quantitative and qualitative data. We found evidence of a significant impact of the leader’s learning on subsequent facilitative leadership and team performance 8 and 12 months later, suggesting a lag between learning leadership skills and translating these skills into leadership behavior. The findings contribute to an understanding of how leaders consolidate their learned experience into facilitative leadership behavior.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
Aromatherapy has been found to have some effectiveness in treating conditions such as postoperative nausea and vomiting, however unless clinicians are aware of and convinced by this evidence, it is unlikely they will choose to use it with their patients. The aim of this study was to test and modify an existing tool, Martin and Furnham’s Beliefs About Aromatherapy Scale in order to make it relevant and meaningful for use with a population of nurses and midwives working in an acute hospital setting. A Delphi process was used to modify the tool and then it was tested in a population of nurses and midwives, then exploratory factor analysis was conducted. The modified tool is reliable and valid for measuring beliefs about aromatherapy in this population.
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
While the implementation of the IEC 61850 standard has significantly enhanced the performance of communications in electrical substations, it has also increased the complexity of the system. Subsequently, these added elaborations have introduced new challenges in relation to the skills and tools required for the design, test and maintenance of 61850-compatible substations. This paper describes a practical experience of testing a protection relay using a non-conventional test equipment; in addition, it proposes a third party software technique to reveal the contents of the packets transferred on the substation network. Using this approach, the standard objects can be linked and interpreted to what the end-users normally see in the IED and test equipment proprietary software programs.
Resumo:
One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.
Resumo:
We examined whether self-ratings of “being active” among older people living in four different settings (major city high and lower density suburbs, a regional city, and a rural area) were associated with out-of-home participation and outdoor physical activity. A mixed-methods approach (survey, travel diary, and GPS tracking over a one-week period) was used to gather data from 48 individuals aged over 55 years. Self-ratings of “being active” were found to be positively correlated with the number of days older people spent time away from home but unrelated to time traveled by active means (walking and biking). No significant differences in active travel were found between the four study locations, despite differences in their respective built environments.The findings suggest that additional strategies to the creation of “age-friendly” environments are needed if older people are to increase their levels of outdoor physical activity. “Active aging” promotion campaigns may need to explicitly identify the benefits of walking outdoors to ambulatory older people as a means of maintaining their overall health, functional ability, and participation within society in the long-term and also encourage the development of community-based programs in order to facilitate regular walking for this group.
Resumo:
Background In the emergency department, portable point-of-care testing (POCT) coagulation devices may facilitate stroke patient care by providing rapid International Normalized Ratio (INR) measurement. The objective of this study was to evaluate the reliability, validity, and impact on clinical decision-making of a POCT device for INR testing in the setting of acute ischemic stroke (AIS). Methods A total of 150 patients (50 healthy volunteers, 51 anticoagulated patients, 49 AIS patients) were assessed in a tertiary care facility. The INR's were measured using the Roche Coaguchek S and the standard laboratory technique. Results The interclass correlation coefficient and 95% confidence interval between overall POCT device and standard laboratory value INRs was high (0.932 (0.69 - 0.78). In the AIS group alone, the correlation coefficient and 95% CI was also high 0.937 (0.59 - 0.74) and diagnostic accuracy of the POCT device was 94%. Conclusions When used by a trained health professional in the emergency department to assess INR in acute ischemic stroke patients, the CoaguChek S is reliable and provides rapid results. However, as concordance with laboratory INR values decreases with higher INR values, it is recommended that with CoaguChek S INRs in the > 1.5 range, a standard laboratory measurement be used to confirm the results.
Resumo:
This paper reports on the findings of qualitative, semi-structured interviews conducted with 40 older Australian participants who either did or did not engage in organized learning. Phenomenology was used to guide the interviews and analysis to explore the lived learning experiences and perspectives of these older people. Their experiences of learning can be described in two main categories of pleasure and leisure or purpose and relevance. Almost all the activities described in these categories have the potential to support health and wellbeing. Organisers of activities should take these reasons into account.
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Resumo:
Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.
Resumo:
Objective This paper presents an automatic active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort, and (2) the robustness of incremental active learning framework across different selection criteria and datasets is determined. Materials and methods The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional Random Fields as the supervised method, and least confidence and information density as two selection criteria for active learning framework were used. The effect of incremental learning vs. standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. Two clinical datasets were used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Results The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared to the Random sampling baseline, the saving is at least doubled. Discussion Incremental active learning guarantees robustness across all selection criteria and datasets. The reduction of annotation effort is always above random sampling and longest sequence baselines. Conclusion Incremental active learning is a promising approach for building effective and robust medical concept extraction models, while significantly reducing the burden of manual annotation.
Resumo:
This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.
Resumo:
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper provides an important and timely overview of a conceptual framework designed to assist with the development of message content, as well as the evaluation, of persuasive health messages. While an earlier version of this framework was presented in a prior publication by the authors in 2009, important refinements to the framework have seen it evolve in recent years, warranting the need for an updated review. This paper outlines the Step approach to Message Design and Testing (or SatMDT) in accordance with the theoretical evidence which underpins, as well as empirical evidence which demonstrates the relevance and feasibility, of each of the framework’s steps. The development and testing of the framework have thus far been based exclusively within the road safety advertising context; however, the view expressed herein is that the framework may have broader appeal and application to the health persuasion context.