699 resultados para 030299 Inorganic Chemistry not elsewhere classified
Resumo:
One could argue that the nature of our housing stock is a key determining factor in the ability of our citizens to manage risk, be resilient to various natural and human events, and to recover from these events. Recent research has been examining current challenges posed by our housing stock and exploring potential solutions from a range of perspectives. The aim of this paper is to discuss key findings from recent built environment research in Australia to initiate cross-sectorial discussion and debate about the implications and opportunities for other sectors such as emergency management and insurance. Three recent building research projects are discussed: - Heat waves The impact of heat waves on houses and occupants, and proposed changes to building regulations, air conditioning standards and building design, to reduce risks associated with heat waves. - Net zero energy homes Exploration of the potential benefits of a strategic optimization of building quality, energy and water efficiency, and household or community level distributed energy and water services for disaster management and recovery. - Building information Mapping of the flow of information about residential buildings, and the potential for national or regional building files (in a similar manner to personal medical records) to assist all parties to make more informed decisions that impact on housing sustainability and community resilience. The paper discusses how sustainability, environmental performance and resilience are inter-related, and can be supported by building files. It concludes with a call for increased cross-sectorial collaboration to explore opportunities for a whole-of-systems approach to our built environment that addresses a range of economic and environmental challenges as well as disaster and emergency management.
Resumo:
The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures” in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.
Resumo:
High Intensity Exercise (HIE) stimulates greater physiological remodeling when compared to workload matched low-moderate intensity exercise. This study utilized an untargeted metabolomics approach to examine the metabolic perturbations that occur following two workload matched supramaximal low volume HIE trials. In a randomized order, 7 untrained males completed two exercise protocols separated by one week; 1) HIE150%: 30 x 20s cycling at 150% VO2peak, 40s passive rest; 2) HIE300%: 30 x 10s cycling at 300% VO2peak, 50 s passive rest. Total exercise duration was 30 minutes for both trials. Blood samples were taken at rest, during and immediately following exercise and at 60 minutes post exercise. Gas chromatography-mass spectrometry (GC-MS) analysis of plasma identified 43 known metabolites of which 3 demonstrated significant fold changes (HIE300% compared to the HIE150% value) during exercise, 14 post exercise and 23 at the end of the recovery period. Significant changes in plasma metabolites relating to lipid metabolism [fatty acids: dodecanoate (p=0.042), hexadecanoate (p=0.001), octadecanoate (p=0.001)], total cholesterol (p=0.001), and glycolysis [lactate (p=0.018)] were observed following exercise and during the recovery period. The HIE300% protocol elicited greater metabolic changes relating to lipid metabolism and glycolysis when compared to HIE150% protocol. These changes were more pronounced throughout the recovery period rather than during the exercise bout itself. Data from the current study demonstrate the use of metabolomics to monitor intensity-dependent changes in multiple metabolic pathways following exercise. The small sample size indicates a need for further studies in a larger sample cohort to validate these findings.
Resumo:
Clarification performance and flocculant dosage is strongly linked to the mud solids loading in the feed entering the clarifier. The recycle of filtrate can represent an extra ~10-15% mud solids loading on the clarifier, thereby reducing its effective capacity. Filtrate recycling may cause significant increase in turbidity, complexed calcium ion formation, phosphate, proteins and polysaccharides in mixed juice that impact on evaporator scale formation and molasses exhaustion. The paper details the results obtained from laboratory, pilot scale and factory trials of filtrate clarification using both sedimentation and flotation methods. Clarified filtrate could be produced of similar quality to ESJ. Filtrate clarification was able to significantly remove insoluble solids, turbidity, phosphate, and polysaccharides content with slight reductions in minerals content of the filtrate. On the basis of improved filtrate quality, the clarified filtrate could be directed to ESJ, instead of the normal practice of directing the mud filtrate to mixed juice. The potential impacts of implementing filtrate clarification are discussed in respect to improved performance and throughput of the clarification station.
Resumo:
Communications between adults and young children can expose different ideas and opinions. Adults and children have different capacities to speak, these discursive spaces can become filled with assumptions, stereotyping and conventional thinking about power and agency. If communication shifts away from the purely discursive, what might be exposed about the explorations, investigations and fantasies adults and children indulge in? Some time ago my young daughter obsessively drew hybrid beings. Created from mixtures of animal, object, human and creature forms, these beings, which are ‘not-quite’, are becoming, able to transform via myriad mutations. We agreed to collaborate and draw additional hybrid beings to experiment with becoming-other through complex entanglements of forms, to complicate, morph and (trans)form from our human selves to hybrid others. The ‘not- quite-ness’ of our monstrous hybrids subvert the conventions of ‘being’ and prompt contemplations about childhood subjectivities, identities, conventionalities and actively interrogate the assumptive knowledges and subjectifications that are held about young children in early childhood professional and academic systems.
Resumo:
Oil palm empty fruit bunch (EFB) is a readily available, lignocellulosic biomass that has potential to be utilized as a carbon substrate for microbial oil production. In order to evaluate the production of microbial oil from EFB, a technical study was performed through the cultivation of oleaginous micro-organisms (Rhodotorula mucilaginosa, Aspergillus oryzae, and Mucor plumbeus) on EFB hydrolyzates. EFB hydrolyzates were prepared through dilute acid pre-treatment of the biomass, where the liquid fraction of pre-treatment was detoxified and used as an EFB liquid hydrolyzate (EFBLH). The solid residue was enzymatically hydrolyzed prior to be used as an EFB enzymatic hydrolyzate (EFBEH). The highest oil concentrations were obtained from M. plumbeus (1.9 g/L of oil on EFBLH and 4.7 g/L of oil on EFBEH). In order to evaluate the feasibility of large-scale microbial oil production, a techno-economic study was performed based on the oil yields of M. plumbeus per hectare of plantation, followed by the estimation of the feedstock cost for oil production. Other oil palm biomasses (frond and trunk) were also included in this study, as it could potentially improve the economics of large-scale microbial oil production. Microbial oil from oil palm biomasses was estimated to potentially increase oil production in the palm oil industry up to 25%, at a cheaper feedstock cost. The outcome of this study demonstrates the potential integration of microbial oil production from oil palm biomasses with existing palm oil industry (biodiesel, food and oleochemicals production), that could potentially enhance sustainability and profitability of microbial oil production.
Resumo:
This study investigated the potential use of sugarcane bagasse as a feedstock for oil production through microbial cultivation. Bagasse was subjected to dilute acid pretreatment with 0.4 wt% H2SO4 (in liquid) at a solid/liquid ratio of 1:6 (wt/wt) at 170 °C for 15 min, followed by enzymatic hydrolysis of solid residue. The liquid fractions of the pretreatment process and the enzymatic hydrolysis process were detoxified and used as liquid hydrolysate (SCBLH) and enzymatic hydrolysate (SCBEH) for the microbial oil production by oleaginous yeast (Rhodotorula mucilaginosa) and filamentous fungi (Aspergillus oryzae and Mucor plumbeus). The results showed that all strains were able to grow and produce oil from bagasse hydrolysates. The highest oil concentrations produced from bagasse hydrolysates were by M. plumbeus at 1.59 g/L (SCBLH) and 4.74 g/L (SCBEH). The microbial oils obtained have similar fatty acid compositions to vegetable oils, indicating that the oil can be used for the production of second generation biodiesel. On the basis of oil yields obtained by M. plumbeus, from 10 million t (wet weight) of bagasse generated annually from sugar mills in Australia, it is estimated that the total biodiesel that could be produced would be equivalent to about 9% of Queensland’s diesel consumption.
Resumo:
In the field of workplace air quality, measuring and analyzing the size distribution of airborne particles to identify their sources and apportion their contribution has become widely accepted, however, the driving factors that influence this parameter, particularly for nanoparticles (< 100 nm), have not been thoroughly determined. Identification of driving factors, and in turn, general trends in size distribution of emitted particles would facilitate the prediction of nanoparticles’ emission behavior and significantly contribute to their exposure assessment. In this study, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method. The results showed relatively high contribution of nanoparticles to the emissions in many of the tested cases, and also, that both surface treatment and feed rate of the machine are significant factors influencing the size distribution of the emitted particles of this size. In particular, applying surface treatments and increasing the machine feed rate have the similar effect of reducing the size of the particles, however, no general trend was found in variations of size distribution across different surface treatments and feed rates. The findings of our study demonstrate that for this process and other activities, where no general trend is found in the size distribution of the emitted airborne particles due to dissimilar effects of the driving factors, each case must be treated separately in terms of workplace exposure assessment and regulations.
Resumo:
Rapid growth in the global population requires expansion of building stock, which in turn calls for increased energy demand. This demand varies in time and also between different buildings, yet, conventional methods are only able to provide mean energy levels per zone and are unable to capture this inhomogeneity, which is important to conserve energy. An additional challenge is that some of the attempts to conserve energy, through for example lowering of ventilation rates, have been shown to exacerbate another problem, which is unacceptable indoor air quality (IAQ). The rise of sensing technology over the past decade has shown potential to address both these issues simultaneously by providing high–resolution tempo–spatial data to systematically analyse the energy demand and its consumption as well as the impacts of measures taken to control energy consumption on IAQ. However, challenges remain in the development of affordable services for data analysis, deployment of large–scale real–time sensing network and responding through Building Energy Management Systems. This article presents the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large–scale deployment and identifies the research gaps that should be closed by future investigations.
Resumo:
Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and the evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990-2010 and the year 2013. These estimates were then applied to assess population-weighted mean concentrations for 1990 – 2013 for each of 188 countries. In 2013, 87% of the world’s population lived in areas exceeding the World Health Organization (WHO) Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries, in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in China. Population-weighted mean concentrations of ozone increased in most countries from 1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in Southeast Asia.
Resumo:
Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
Traffic-related air pollution has been associated with a wide range of adverse health effects. One component of traffic emissions that has been receiving increasing attention is ultrafine particles(UFP, < 100 nm), which are of concern to human health due to their small diameters. Vehicles are the dominant source of UFP in urban environments. Small-scale variation in ultrafine particle number concentration (PNC) can be attributed to local changes in land use and road abundance. UFPs are also formed as a result of particle formation events. Modelling the spatial patterns in PNC is integral to understanding human UFP exposure and also provides insight into particle formation mechanisms that contribute to air pollution in urban environments. Land-use regression (LUR) is a technique that can use to improve the prediction of air pollution.
Resumo:
Characterising the release of different types of Engineered Nanoparticles (ENPs) from various processes is of critical importance for the assessment of human exposure, as well as understanding the possible health effects of these particles. Therefore, the main aim of this chapter is to present a comprehensive review of studies which report on the release of airborne ENPs in different nanotechnology workplaces. The chapter will cover topics of relevance to the occupational characterisation of ENP emissions, ranging from the identification of different particle release sources and scenarios, to measurement methods and working towards a more uniform approach to characterisation. Furthermore, a brief review of ENP exposure control strategies, together with the application of mathematical modelling as an effective tool for the characterisation of emissions at nanotechnology workplaces is included.
Resumo:
Ambient temperature is one of the basic parameters characterising human comfort: are we too hot, too cold, or just right? The impact of temperature goes beyond comfort: inadequate temperature and temperature variations have consequences on human health, as the increasing numbers of studies have demonstrated. The topic is of particular significance at the times when climate change shifts the traditional – as we know them- temperature zones, and brings much wider temperature variations. For these reasons the impact of temperature on health has been one of the most popular topics among the articles submitted and published in Science of the Total Environment over the last few years. This Virtual Special Issue compiles 18 articles published in our journal on this topic since 2012. It is worth briefly summarizing the rich scientific insights brought by these articles, as well as broader considerations, particularly those extending to management, discussed by the authors of the articles.