453 resultados para ventilatory response
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
Feedforward inhibition deficits have been consistently demonstrated in a range of neuropsychiatric conditions using prepulse inhibition (PPI) of the acoustic startle eye-blink reflex when assessing sensorimotor gating. While PPI can be recorded in acutely decerebrated rats, behavioural, pharmacological and psychophysiological studies suggest the involvement of a complex neural network extending from brainstem nuclei to higher order cortical areas. The current functional magnetic resonance imaging study investigated the neural network underlying PPI and its association with electromyographically (EMG) recorded PPI of the acoustic startle eye-blink reflex in 16 healthy volunteers. A sparse imaging design was employed to model signal changes in blood oxygenation level-dependent (BOLD) responses to acoustic startle probes that were preceded by a prepulse at 120 ms or 480 ms stimulus onset asynchrony or without prepulse. Sensorimotor gating was EMG confirmed for the 120-ms prepulse condition, while startle responses in the 480-ms prepulse condition did not differ from startle alone. Multiple regression analysis of BOLD contrasts identified activation in pons, thalamus, caudate nuclei, left angular gyrus and bilaterally in anterior cingulate, associated with EMGrecorded sensorimotor gating. Planned contrasts confirmed increased pons activation for startle alone vs 120-ms prepulse condition, while increased anterior superior frontal gyrus activation was confirmed for the reverse contrast. Our findings are consistent with a primary pontine circuitry of sensorimotor gating that interconnects with inferior parietal, superior temporal, frontal and prefrontal cortices via thalamus and striatum. PPI processes in the prefrontal, frontal and superior temporal cortex were functionally distinct from sensorimotor gating.
Resumo:
This report is one of a series of products resulting from a National Health and Medical Research Council (NHMRC) Urgent Research Grant – Pandemic Influenza [No 409973]. The research targeted two key aspects of planning and preparedness for a human influenza pandemic, namely:
Resumo:
Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.
Resumo:
Differential response has long been utilized by statutory child protection systems in Australia. This article describes the advent and history of Victoria's differential response system, with a particular focus on the Child FIRST and IFS programme. This program entails a partnership arrangement between the Department of Human Services child protection services and community-based, not-for-profit agencies to provide a diverse range of early intervention and prevention services. The findings of a recent external service system evaluation, a judicial inquiry, and the large-scale Child and Family Services Outcomes Survey of parents/carers perspectives of their service experiences are used to critically examine the effectiveness of this differential response approach. Service-user perspectives of the health and wellbeing of children and families are identified, as well as the recognized implementation issues posing significant challenges for the goal of an integrated partnership system. The need for ongoing reform agendas is highlighted along with the policy, program and structural tensions that exist in differential response systems, which are reliant upon partnerships and shared responsibilities for protecting children and assisting vulnerable families. Suggestions are made for utilizing robust research and evaluation that gives voice to service users and promotes their rights and interests.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.
Resumo:
Online fraud poses a significant problem to society in terms of its monetary losses and the devastating impact on victims. It also poses significant challenges to law enforcement agencies, regarding their ability to investigate crimes which are complex, occur in a virtual environment, incorporate multiple (often international) jurisdictions, and have a very low reporting rate. This paper examines the police response to online fraud. It argues that traditionally, fraud has received little attention and priority from police agencies and this is exacerbated in the online context. In contrast to this, the paper presents the example of Project Sunbird, a partnership between the West Australian Police and the West Australian Department of Commerce which has embraced the use of financial intelligence to proactively contact suspected victims of online fraud. This paper argues that a proactive approach to policing online fraud can have substantial positive effects for police and victims alike.
Resumo:
In responding to future influenza pandemics and other infectious agents, plasmid DNA overcomes many of the limitations of conventional vaccine production approaches.
Resumo:
The forthcoming NIST’s Advanced Hash Standard (AHS) competition to select SHA-3 hash function requires that each candidate hash function submission must have at least one construction to support FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to select either a candidate hash function which is more resistant to known side channel attacks (SCA) when plugged into HMAC, or that has an alternative MAC mode which is more resistant to known SCA than the other submitted alternatives. In response to this, we perform differential power analysis (DPA) on the possible smart card implementations of some of the recently proposed MAC alternatives to NMAC (a fully analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC versions of some recently proposed hash and compression function modes. We show that the recently proposed BNMAC and KMDP MAC schemes are even weaker than NMAC/HMAC against the DPA attacks, whereas multi-lane NMAC, EMD MAC and the keyed wide-pipe hash have similar security to NMAC against the DPA attacks. Our DPA attacks do not work on the NMAC setting of MDC-2, Grindahl and MAME compression functions.
Resumo:
Biphasic vasodilatory responses to adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) were observed in the coronary vasculature of K(+)-arrested perfused rat hearts. Dose-response data for both agonists were best represented by two-site models. For adenosine, two sites with negative log ED50 (pED50) values of 8.1 +/- 0.1 (mean +/- S.E.M) and 5.2 +/- 0.1 were obtained, mediating 31 +/- 2% and 69 +/- 2% of the total response. In the presence of 8-phenyltheophylline, the vasodilatory response to adenosine remained best fitted to a two-site model with pED50 values of 7.0 +/- 0.2 and 5.4 +/- 0.2. The relative contribution of each site to the total response remained unchanged. For NECA, pED50 values of 9.6 +/- 0.1 and 6.8 +/- 0.2 were obtained, representing 48 +/- 3% and 52 +/- 3% of the sites, respectively. In contrast, ATP produced a monophasic response with a pED50 value of 8.8 +/- 0.1. These results provide evidence of adenosine receptor and response heterogeneity in the in situ coronary vasculature.