939 resultados para scalable analysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road agencies require comprehensive, relevan and quality data describing their road assets to support their investment decisions. An investment decision support system for raod maintenance and rehabilitation mainly comprise three important supporting elements namely: road asset data, decision support tools and criteria for decision-making. Probability-based methods have played a crucial role in helping decision makers understand the relationship among road related data, asset performance and uncertainties in estimating budgets/costs for road management investment. This paper presents applications of the probability-bsed method for road asset management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of linear relationships in symmetric block ciphers. A block cipher is designed so that the ciphertext is produced as a nonlinear function of the plaintext and secret master key. However, linear relationships within the cipher can still exist if the texts and components of the cipher are manipulated in a number of ways, as shown in this thesis. There are four main contributions of this thesis. The first contribution is the extension of the applicability of integral attacks from word-based to bitbased block ciphers. Integral attacks exploit the linear relationship between texts at intermediate stages of encryption. This relationship can be used to recover subkey bits in a key recovery attack. In principle, integral attacks can be applied to bit-based block ciphers. However, specific tools to define the attack on these ciphers are not available. This problem is addressed in this thesis by introducing a refined set of notations to describe the attack. The bit patternbased integral attack is successfully demonstrated on reduced-round variants of the block ciphers Noekeon, Present and Serpent. The second contribution is the discovery of a very small system of equations that describe the LEX-AES stream cipher. LEX-AES is based heavily on the 128-bit-key (16-byte) Advanced Encryption Standard (AES) block cipher. In one instance, the system contains 21 equations and 17 unknown bytes. This is very close to the upper limit for an exhaustive key search, which is 16 bytes. One only needs to acquire 36 bytes of keystream to generate the equations. Therefore, the security of this cipher depends on the difficulty of solving this small system of equations. The third contribution is the proposal of an alternative method to measure diffusion in the linear transformation of Substitution-Permutation-Network (SPN) block ciphers. Currently, the branch number is widely used for this purpose. It is useful for estimating the possible success of differential and linear attacks on a particular SPN cipher. However, the measure does not give information on the number of input bits that are left unchanged by the transformation when producing the output bits. The new measure introduced in this thesis is intended to complement the current branch number technique. The measure is based on fixed points and simple linear relationships between the input and output words of the linear transformation. The measure represents the average fraction of input words to a linear diffusion transformation that are not effectively changed by the transformation. This measure is applied to the block ciphers AES, ARIA, Serpent and Present. It is shown that except for Serpent, the linear transformations used in the block ciphers examined do not behave as expected for a random linear transformation. The fourth contribution is the identification of linear paths in the nonlinear round function of the SMS4 block cipher. The SMS4 block cipher is used as a standard in the Chinese Wireless LAN Wired Authentication and Privacy Infrastructure (WAPI) and hence, the round function should exhibit a high level of nonlinearity. However, the findings in this thesis on the existence of linear relationships show that this is not the case. It is shown that in some exceptional cases, the first four rounds of SMS4 are effectively linear. In these cases, the effective number of rounds for SMS4 is reduced by four, from 32 to 28. The findings raise questions about the security provided by SMS4, and might provide clues on the existence of a flaw in the design of the cipher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific discoveries, developments in medicine and health issues are the constant focus of media attention and the principles surrounding the creation of so called ‘saviour siblings’ are of no exception. The development in the field of reproductive techniques has provided the ability to genetically analyse embryos created in the laboratory to enable parents to implant selected embryos to create a tissue-matched child who may be able to cure an existing sick child. The research undertaken in this thesis examines the regulatory frameworks overseeing the delivery of assisted reproductive technologies (ART) in Australia and the United Kingdom and considers how those frameworks impact on the accessibility of in vitro fertilisation (IVF) procedures for the creation of ‘saviour siblings’. In some jurisdictions, the accessibility of such techniques is limited by statutory requirements. The limitations and restrictions imposed by the state in relation to the technology are analysed in order to establish whether such restrictions are justified. The analysis is conducted on the basis of a harm framework. The framework seeks to establish whether those affected by the use of the technology (including the child who will be created) are harmed. In order to undertake such evaluation, the concept of harm is considered under the scope of John Stuart Mill’s liberal theory and the Harm Principle is used as a normative tool to judge whether the level of harm that may result, justifies state intervention or restriction with the reproductive decision-making of parents in this context. The harm analysis conducted in this thesis seeks to determine an appropriate regulatory response in relation to the use of pre-implantation tissue-typing for the creation of ‘saviour siblings’. The proposals outlined in the last part of this thesis seek to address the concern that harm may result from the practice of pre-implantation tissue-typing. The current regulatory frameworks in place are also analysed on the basis of the harm framework established in this thesis. The material referred to in this thesis reflects the law and policy in place in Australia and the UK at the time the thesis was submitted for examination (December 2009).