476 resultados para curve detection
Resumo:
Background Detection of outbreaks is an important part of disease surveillance. Although many algorithms have been designed for detecting outbreaks, few have been specifically assessed against diseases that have distinct seasonal incidence patterns, such as those caused by vector-borne pathogens. Methods We applied five previously reported outbreak detection algorithms to Ross River virus (RRV) disease data (1991-2007) for the four local government areas (LGAs) of Brisbane, Emerald, Redland and Townsville in Queensland, Australia. The methods used were the Early Aberration Reporting System (EARS) C1, C2 and C3 methods, negative binomial cusum (NBC), historical limits method (HLM), Poisson outbreak detection (POD) method and the purely temporal SaTScan analysis. Seasonally-adjusted variants of the NBC and SaTScan methods were developed. Some of the algorithms were applied using a range of parameter values, resulting in 17 variants of the five algorithms. Results The 9,188 RRV disease notifications that occurred in the four selected regions over the study period showed marked seasonality, which adversely affected the performance of some of the outbreak detection algorithms. Most of the methods examined were able to detect the same major events. The exception was the seasonally-adjusted NBC methods that detected an excess of short signals. The NBC, POD and temporal SaTScan algorithms were the only methods that consistently had high true positive rates and low false positive and false negative rates across the four study areas. The timeliness of outbreak signals generated by each method was also compared but there was no consistency across outbreaks and LGAs. Conclusions This study has highlighted several issues associated with applying outbreak detection algorithms to seasonal disease data. In lieu of a true gold standard, a quantitative comparison is difficult and caution should be taken when interpreting the true positives, false positives, sensitivity and specificity.
Resumo:
China is an emerging and leading world economy. The pace of economic change has been tremendously rapid since the beginning of economic reforms. Despite the importance of the Environmental Kuznets Curve (EKC) and environmental problems in China, no previous study has tested the EKC in China because of the difficulty in obtaining data and the need to adjust the data. The focus of this paper is to test the EKC in China using province level data over the period 1992-2003. This study applies non-parametric techniques to estimate the relationship between income and the environmental quality of wastewater, air pollution and solid waste. Copyright © 2009 Inderscience Enterprises Ltd.
Resumo:
This study decomposed the determinants of environmental quality into scale, technique, and composition effects. We applied a semiparametric method of generalized additive models, which enabled us to use flexible functional forms and include several independent variables in the model. The differences in the technique effect were found to play a crucial role in reducing pollution. We found that the technique effect was sufficient to reduce sulfur dioxide emissions. On the other hand, its effect was not enough to reduce carbon dioxide (CO2) emissions and energy use, except for the case of CO2 emissions in high-income countries.
Resumo:
As a result of India's extremely rapid economic growth, the scale and seriousness of environmental problems are no longer in doubt. Whether pollution abatement technologies are utilized more efficiently is crucial in the analysis of environmental management because it influences the cost of alternative production and pollution abatement technologies. In this study, we use state-level industry data of sulfur dioxide, nitrogen dioxide, and suspended particular matter over the period 1991-2003. Employing recently developed productivity measurement technique, we show that overall environmental productivities decrease over time in India. Furthermore, we analyze the determinants of environmental productivities and find environmental Kuznets curve type relationship existences between environmental productivity and income. Panel analysis results show that the scale effect dominates over the technique effect. Therefore, a combined effect of income on environmental productivity is negative.
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.
Resumo:
This paper investigates the effect of topic dependent language models (TDLM) on phonetic spoken term detection (STD) using dynamic match lattice spotting (DMLS). Phonetic STD consists of two steps: indexing and search. The accuracy of indexing audio segments into phone sequences using phone recognition methods directly affects the accuracy of the final STD system. If the topic of a document in known, recognizing the spoken words and indexing them to an intermediate representation is an easier task and consequently, detecting a search word in it will be more accurate and robust. In this paper, we propose the use of TDLMs in the indexing stage to improve the accuracy of STD in situations where the topic of the audio document is known in advance. It is shown that using TDLMs instead of the traditional general language model (GLM) improves STD performance according to figure of merit (FOM) criteria.
Resumo:
Novel computer vision techniques have been developed to automatically detect unusual events in crowded scenes from video feeds of surveillance cameras. The research is useful in the design of the next generation intelligent video surveillance systems. Two major contributions are the construction of a novel machine learning model for multiple instance learning through compressive sensing, and the design of novel feature descriptors in the compressed video domain.
Resumo:
Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.