477 resultados para common method variance
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
Analytical expressions are derived for the mean and variance, of estimates of the bispectrum of a real-time series assuming a cosinusoidal model. The effects of spectral leakage, inherent in discrete Fourier transform operation when the modes present in the signal have a nonintegral number of wavelengths in the record, are included in the analysis. A single phase-coupled triad of modes can cause the bispectrum to have a nonzero mean value over the entire region of computation owing to leakage. The variance of bispectral estimates in the presence of leakage has contributions from individual modes and from triads of phase-coupled modes. Time-domain windowing reduces the leakage. The theoretical expressions for the mean and variance of bispectral estimates are derived in terms of a function dependent on an arbitrary symmetric time-domain window applied to the record. the number of data, and the statistics of the phase coupling among triads of modes. The theoretical results are verified by numerical simulations for simple test cases and applied to laboratory data to examine phase coupling in a hypothesis testing framework
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.
Resumo:
Germ-line mutations in CDKN2A have been shown to predispose to cutaneous malignant melanoma. We have identified 2 new melanoma kindreds which carry a duplication of a 24bp repeat present in the 5' region of CDKN2A previously identified in melanoma families from Australia and the United States. This mutation has now been reported in 5 melanoma families from 3 continents: Europe, North America, and Australasia. The M53I mutation in exon 2 of CDKN2A has also been documented in 5 melanoma families from Australia and North America. The aim of this study was to determine whether the occurrence of the mutations in these families from geographically diverse populations represented mutation hotspots within CDKN2A or were due to common ancestors. Haplotypes of 11 microsatellite markers flanking CDKN2A were constructed in 5 families carrying the M53I mutation and 5 families carrying the 24bp duplication. There were some differences in the segregating haplotypes due primarily to recombinations and mutations within the short tandem-repeat markers; however, the data provide evidence to indicate that there were at least 3 independent 24bp duplication events and possibly only 1 original M53I mutation. This is the first study to date which indicates common founders in melanoma families from different continents.
Resumo:
This paper reports the feasibility and methodological considerations of using the Short Message System Experience Sampling (SMS-ES) Method, which is an experience sampling research method developed to assist researchers to collect repeat measures of consumers’ affective experiences. The method combines SMS with web-based technology in a simple yet effective way. It is described using a practical implementation study that collected consumers’ emotions in response to using mobile phones in everyday situations. The method is further evaluated in terms of the quality of data collected in the study, as well as against the methodological considerations for experience sampling studies. These two evaluations suggest that the SMS-ES Method is both a valid and reliable approach for collecting consumers’ affective experiences. Moreover, the method can be applied across a range of for-profit and not-for-profit contexts where researchers want to capture repeated measures of consumers’ affective experiences occurring over a period of time. The benefits of the method are discussed to assist researchers who wish to apply the SMS-ES Method in their own research designs.
Resumo:
The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.
Resumo:
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity space, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.
Resumo:
There are many applications in aeronautical/aerospace engineering where some values of the design parameters states cannot be provided or determined accurately. These values can be related to the geometry(wingspan, length, angles) and or to operational flight conditions that vary due to the presence of uncertainty parameters (Mach, angle of attack, air density and temperature, etc.). These uncertainty design parameters cannot be ignored in engineering design and must be taken into the optimisation task to produce more realistic and reliable solutions. In this paper, a robust/uncertainty design method with statistical constraints is introduced to produce a set of reliable solutions which have high performance and low sensitivity. Robust design concept coupled with Multi Objective Evolutionary Algorithms (MOEAs) is defined by applying two statistical sampling formulas; mean and variance/standard deviation associated with the optimisation fitness/objective functions. The methodology is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. It is implemented for two practical Unmanned Aerial System (UAS) design problems; the flrst case considers robust multi-objective (single disciplinary: aerodynamics) design optimisation and the second considers a robust multidisciplinary (aero structures) design optimisation. Numerical results show that the solutions obtained by the robust design method with statistical constraints have a more reliable performance and sensitivity in both aerodynamics and structures when compared to the baseline design.
Resumo:
The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The concept of using Shock Control Bump (SCB) is to control supersonic flow on the suction/pressure side of NLF aerofoil: RAE 5243 that leads to delaying shock occurrence or weakening its strength. Such AFC technique reduces total drag at transonic speeds due to reduction of wave drag. The location of Boundary Layer Transition (BLT) can influence the position the supersonic shock occurrence. The BLT position is an uncertainty in aerodynamic design due to the many factors, such as surface contamination or surface erosion. The paper studies the SCB shape design optimisation using robust Evolutionary Algorithms (EAs) with uncertainty in BLT positions. The optimisation method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. Two test cases are conducted; the first test assumes the BLT is at 45% of chord from the leading edge and the second test considers robust design optimisation for SCB at the variability of BLT positions and lift coefficient. Numerical result shows that the optimisation method coupled to uncertainty design techniques produces Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
Real estate, or property development, is considered one of the pillar industries of the Chinese economy. As a result of the opening up of the economy as well as the "macro-control" policy of the Central Chinese Government to moderate the frenetic pace of growth of the economy, the real estate industry has faced fierce competition and ongoing change. Real estate firms in China must improve their competitiveness in order to maintain market share or even survive in this brutally competitive environment. This study developed a methodology to evaluate the competitiveness of real estate developers in the China and then used a case study to illustrate the effectiveness of the evaluation method. Four steps were taken to achieve this. The first step was to conduct a thorough literature review which included a review of the characteristics of real estate industry, theories about competitiveness and the competitive characteristics of real estate developers. Following this literature review, the competitive model was developed based on seven key competitive factors (the 'level 1') identified in the literature. They include: (1) financial competency; (2) market share; (3) management competency; (4) social responsibility; (5) organisational competency; (6) technological capabilities; and, (7) regional competitiveness. In the next step of research, the competitive evaluation criteria (the 'level 2') under each of competitive factors (the 'level 1') were evaluated. Additionally, there were identified a set of competitive attributes (the 'level 3') under each competitive criteria (the 'level 2'). These attributes were initially recognised during the literature review and then expanded upon through interviews with multidisciplinary experts and practitioners in various real estate-related industries. The final step in this research was to undertake a case study using the proposed evaluation method and attributes. Through the study of an actual real estate development company, the procedures and effectiveness of the evaluation method were illustrated and validated. Through the above steps, this research investigates and develops an analytical system for determining the corporate competitiveness of real estate developers in China. The analytical system is formulated to evaluate the "state of health" of the business from different competitive perspectives. The result of empirical study illustrates that a systematic and structured evaluation can effectively assist developers in identifying their strengths and highlighting potential problems. This is very important for the development of an overall corporate strategy and supporting key strategic decisions. This study also provides some insights, analysis and suggestions for improving the competitiveness of real estate developers in China from different perspectives, including: management competency, organisational competency, technological capabilities, financial competency, market share, social responsibility and regional competitiveness. In the case study, problems were found in each of these areas, and they appear to be common in the industry. To address these problems and improve the competitiveness and effectiveness of Chinese real estate developers, a variety of suggestions are proposed. The findings of this research provide an insight into the factors that influence competitiveness in the Chinese real estate industry while also assisting practitioners to formulate strategies to improve their competitiveness. References for studying the competitiveness of real estate developers in other countries are also provided.