413 resultados para bacteria genome nucleotide usage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 × 10-4; Australia: P = 3.7 × 10-4). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 × 10-11). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 × 10-5). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ulcerative colitis is a common form of inflammatory bowel disease with a complex etiology. As part of the Wellcome Trust Case Control Consortium 2, we performed a genome-wide association scan for ulcerative colitis in 2,361 cases and 5,417 controls. Loci showing evidence of association at P 1 × 10 5 were followed up by genotyping in an independent set of 2,321 cases and 4,818 controls. We find genome-wide significant evidence of association at three new loci, each containing at least one biologically relevant candidate gene, on chromosomes 20q13 (HNF4A; P = 3.2 × 10 17), 16q22 (CDH1 and CDH3; P = 2.8 × 10 8) and 7q31 (LAMB1; P = 3.0 × 10 8). Of note, CDH1 has recently been associated with susceptibility to colorectal cancer, an established complication of longstanding ulcerative colitis. The new associations suggest that changes in the integrity of the intestinal epithelial barrier may contribute to the pathogenesis of ulcerative colitis. © 2009 Nature America, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality (λs=82) and heritability (>90%) that primarily affects spinal and sacroiliac joints. Whole genome scans for linkage to AS phenotypes have been conducted, although results have been inconsistent between studies and all have had modest sample sizes. One potential solution to these issues is to combine data from multiple studies in a retrospective meta-analysis. Methods: The International Genetics of Ankylosing Spondylitis Consortium combined data from three whole genome linkage scans for AS (n=3744 subjects) to determine chromosomal markers that show evidence of linkage with disease. Linkage markers typed in different centres were integrated into a consensus map to facilitate effective data pooling. We performed a weighted meta-analysis to combine the linkage results, and compared them with the three individual scans and a combined pooled scan. Results: In addition to the expected region surrounding the HLA-B27 gene on chromosome 6, we determined that several marker regions showed significant evidence of linkage with disease status. Regions on chromosome 10q and 16q achieved 'suggestive' evidence of linkage, and regions on chromosomes 1q, 3q, 5q, 6q, 9q, 17q and 19q showed at least nominal linkage in two or more scans and in the weighted meta-analysis. Regions previously associated with AS on chromosome 2q (the IL-1 gene cluster) and 22q (CYP2D6) exhibited nominal linkage in the meta-analysis, providing further statistical support for their involvement in susceptibility to AS. Conclusion: These findings provide a useful guide for future studies aiming to identify the genes involved in this highly heritable condition. . Published by on behalf of the British Society for Rheumatology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a ubiquitous intracellular pathogen, first associated with human respiratory disease and subsequently detected in a range of mammals, amphibians, and reptiles. Here we report the draft genome sequence for strain B21 of C. pneumoniae, isolated from the endangered Australian marsupial the western barred bandicoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restructuring of the crop agriculture industry over the past two decades has enabled patent holders to exclude, prevent and deter others from using certain research tools and delay or block further follow-on inventions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic convergence is thought to be driven by parallel substitutions coupled with natural selection at the sequence level. Multiple independent evolutionary transitions of mammals to an aquatic environment offer an opportunity to test this thesis. Here, whole genome alignment of coding sequences identified widespread parallel amino acid substitutions in marine mammals; however, the majority of these changes were not unique to these animals. Conversely, we report that candidate aquatic adaptation genes, identified by signatures of likelihood convergence and/or elevated ratio of nonsynonymous to synonymous nucleotide substitution rate, are characterized by very few parallel substitutions and exhibit distinct sequence changes in each group. Moreover, no significant positive correlation was found between likelihood convergence and positive selection in all three marine lineages. These results suggest that convergence in protein coding genes associated with aquatic lifestyle is mainly characterized by independent substitutions and relaxed negative selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue virus (DENV) populations are characteristically highly diverse. Regular lineage extinction and replacement is an important dynamic DENV feature, and most DENV lineage turnover events are associated with increased incidence of disease. The role of genetic diversity in DENV lineage extinctions is not understood. We investigated the nature and extent of genetic diversity in the envelope (E) gene of DENV serotype 1 representing different lineages histories. A region of the DENV genome spanning the E gene was amplified and sequenced by Roche/454 pyrosequencing. The pyrosequencing results identified distinct sub-populations (haplotypes) for each DENV-1 E gene. A phylogenetic tree was constructed with the consensus DENV-1 E gene nucleotide sequences, and the sequences of each constructed haplotype showed that the haplotypes segregated with the Sanger consensus sequence of the population from which they were drawn. Haplotypes determined through pyrosequencing identified a recombinant DENV genome that could not be identified through Sanger sequencing. Nucleotide level sequence diversities of DENV-1 populations determined from SNP analysis were very low, estimated from 0.009-0.01. There were also no stop codon, frameshift or non-frameshift mutations observed in the E genes of any lineage. No significant correlations between the accumulation of deleterious mutations or increasing genetic diversity and lineage extinction were observed (p>0.5). Although our hypothesis that accumulation of deleterious mutations over time led to the extinction and replacement of DENV lineages was ultimately not supported by the data, our data does highlight the significant technical issues that must be resolved in the way in which population diversity is measured for DENV and other viruses. The results provide an insight into the within-population genetic structure and diversity of DENV-1 populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oncogene MDM4, also known as MDMX or HDMX, contributes to cancer susceptibility and progression through its capacity to negatively regulate a range of genes with tumour-suppressive functions. As part of a recent genome-wide association study it was determined that the A-allele of the rs4245739 SNP (A>C), located in the 3'-UTR of MDM4, is associated with an increased risk of prostate cancer. Computational predictions revealed that the rs4245739 SNP is located within a predicted binding site for three microRNAs (miRNAs): miR-191-5p, miR-887 and miR-3669. Herein, we show using reporter gene assays and endogenous MDM4 expression analyses that miR-191-5p and miR-887 have a specific affinity for the rs4245739 SNP C-allele in prostate cancer. These miRNAs do not affect MDM4 mRNA levels, rather they inhibit its translation in C-allele-containing PC3 cells but not in LNCaP cells homozygous for the A-allele. By analysing gene expression datasets from patient cohorts, we found that MDM4 is associated with metastasis and prostate cancer progression and that targeting this gene with miR-191-5p or miR-887 decreases in PC3 cell viability. This study is the first, to our knowledge, to demonstrate regulation of the MDM4 rs4245739 SNP C-allele by two miRNAs in prostate cancer, and thereby to identify a mechanism by which the MDM4 rs4245739 SNP A-allele may be associated with an increased risk for prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors. Methods We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n = 50 000) and CVD risk factors (n = 200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR. Results We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR < 0.01). For T2D, we detected one locus adjacent to HNF1B. Conclusions We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY QUESTION Are single-nucleotide polymorphisms (SNPs) at the interleukin 1A (IL1A) gene locus associated with endometriosis risk? SUMMARY ANSWER We found evidence for strong association between IL1A SNPs and endometriosis risk. WHAT IS KNOWN ALREADY Genetic factors contribute substantially to the complex aetiology of endometriosis and the disease has an estimated heritability of ∼51%. We, and others, have conducted genome-wide association (GWA) studies for endometriosis, which identified a total of nine independent risk loci. Recently, two small Japanese studies reported eight SNPs (rs6542095, rs11677416, rs3783550, rs3783525, rs3783553, rs2856836, rs1304037 and rs17561) at the IL1A gene locus as suggestively associated with endometriosis risk. There is also evidence of a link between inflammation and endometriosis. STUDY DESIGN, SIZE, DURATION We sought to further investigate the eight IL1A SNPs for association with endometriosis using an independent sample of 3908 endometriosis cases and 8568 controls of European and Japanese ancestry. The study was conducted between October 2013 and July 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS By leveraging GWA data from our previous multi-ethnic GWA meta-analysis for endometriosis, we imputed variants in the IL1A region, using a recent 1000 Genomes reference panel. After combining summary statistics for the eight SNPs from our European and Japanese imputed data with the published results, a fixed-effect meta-analysis was performed. An additional meta-analysis restricted to endometriosis cases with moderate-to-severe (revised American Fertility Society stage 3 or 4) disease versus controls was also performed. MAIN RESULTS AND THE ROLE OF CHANCE All eight IL1A SNPs successfully replicated at P < 0.014 in the European imputed data with concordant direction and similar size to the effects reported in the original Japanese studies. Of these, three SNPs (rs6542095, rs3783550 and rs3783525) also showed association with endometriosis at a nominal P < 0.05 in our independent Japanese sample. Fixed-effect meta-analysis of the eight SNPs for moderate-to-severe endometriosis produced a genome-wide significant association for rs6542095 (odds ratio = 1.21; 95% confidence interval = 1.13–1.29; P = 3.43 × 10−8). LIMITATIONS, REASONS FOR CAUTION The meta-analysis for moderate-to-severe endometriosis included results of moderate-to-severe endometriosis cases from our European data sets and all endometriosis cases from the Japanese data sets, as disease stage information was not available for endometriosis cases in the Japanese data sets. WIDER IMPLICATIONS OF THE FINDINGS SNP rs6542095 is located ∼2.3 kb downstream of the IL1A gene and ∼6.9 kb upstream of cytoskeleton-associated protein 2-like (CKAP2L) gene. The IL1A gene encodes the IL1a protein, a member of the interleukin 1 cytokine family which is involved in various immune responses and inflammatory processes. These results provide important replication in an independent Japanese sample and, for the first time, association of the IL1A locus in endometriosis patients of European ancestry. SNPs within the IL1A locus may regulate other genes, but if IL1A is the target, our results provide supporting evidence for a link between inflammatory responses and the pathogenesis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by grants from the Australian National Health and Medical Research Council and Wellcome Trust. None of the authors has competing interests for the study.