504 resultados para Veterinary ophthalmology
Resumo:
Collagen crosslinking (CXL) has shown promising results in the prevention of the progression of keratoconus and corneal ectasia. However, techniques for in vivo and in situ assessment of the treatment are limited. In this study, ex vivo porcine eyes were treated with a chemical CXL agent (glutaraldehyde), during which polarization sensitive optical coherence tomography (PS-OCT) recordings were acquired simultaneously to assess the sensitivity of the technique to assess changes in the cornea. The results obtained in this study suggest that PS-OCT may be a suitable technique to measure CXL changes in situ and to assess the local changes in the treated region of the cornea.
Resumo:
Purpose To investigate hyperopic shifts and the oblique (or 45-degree/135-degree) component of astigmatism at large angles in the horizontal visual field using the Hartmann-Shack technique. Methods The adult participants consisted of 6 hypermetropes, 13 emmetropes and 11 myopes. Measurements were made with a modified COAS-HD Hartmann-Shack aberrometer across T60 degrees along the horizontal visual field in 5-degree steps. Eyes were dilated with 1% cyclopentolate. Peripheral refraction was estimated as mean spherical (or spherical equivalent) refraction, with/against the rule of astigmatism and oblique astigmatism components, and as horizontal and vertical refraction components based on 3-mm major diameter elliptical pupils. Results Thirty percent of eyes showed a pattern that was a combination of type IV and type I patterns of Rempt et al. (Rempt F, Hoogerheide J, Hoogenboom WP. Peripheral retinoscopy and the skiagram. Ophthalmologica 1971;162:1Y10), which shows the characteristics of type IV (relative hypermetropia along the vertical meridian and relative myopia along the horizontal meridian) out to an angle of between 40 and 50 degrees before behaving like type I (both meridians show relative hypermetropia). We classified this pattern as type IV/I. Seven of 13 emmetropes had this pattern. As a group, there was no significant variation of the oblique component of astigmatism with angle, but about one-half of the eyes showed significant positive slopes (more positive or less negative values in the nasal field than in the temporal field) and one-fourth showed significant negative slopes. Conclusions It is often considered that a pattern of relative peripheral hypermetropia predisposes to the development of myopia. In this context, the finding of a considerable portion of emmetropes with the IV/I pattern suggests that it is unlikely that refraction at visual field angles beyond 40 degrees from fixation contributes to myopia development.
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...
Resumo:
Purpose Videokeratoscopy images can be used for the non-invasive assessment of the tear film. In this work the applicability of an image processing technique, textural-analysis, for the assessment of the tear film in Placido disc images has been investigated. Methods In the presence of tear film thinning/break-up, the reflected pattern from the videokeratoscope is disturbed in the region of tear film disruption. Thus, the Placido pattern carries information about the stability of the underlying tear film. By characterizing the pattern regularity, the tear film quality can be inferred. In this paper, a textural features approach is used to process the Placido images. This method provides a set of texture features from which an estimate of the tear film quality can be obtained. The method is tested for the detection of dry eye in a retrospective dataset from 34 subjects (22-normal and 12-dry eye), with measurements taken under suppressed blinking conditions. Results To assess the capability of each texture-feature to discriminate dry eye from normal subjects, the receiver operating curve (ROC) was calculated and the area under the curve (AUC), specificity and sensitivity extracted. For the different features examined, the AUC value ranged from 0.77 to 0.82, while the sensitivity typically showed values above 0.9 and the specificity showed values around 0.6. Overall, the estimated ROCs indicate that the proposed technique provides good discrimination performance. Conclusions Texture analysis of videokeratoscopy images is applicable to study tear film anomalies in dry eye subjects. The proposed technique appears to have demonstrated its clinical relevance and utility.
Resumo:
Purpose To determine the rate of recurrence and associated risk factors following the use of mitomycin C (MMC) and/or interferon alpha-2b (IFN) for management of non-invasive ocular surface squamous neoplasia (OSSN). Design Retrospective non-comparative interventional case series. Methods Clinical practice setting of 135 patients treated consecutively with topical MMC (0.4 mg/mL) and/or IFN (1 million units/mL) for OSSN observed for clinical recurrence. Results Clinical recurrences were diagnosed in 19 of 135 (14.1%) eyes following topical treatment. The mean time to recurrence was 17.2 months (range 4 - 61) with 14 (73.7%) recurring within a two year period. There was no greater risk of recurrence identified for variables including lesion size, lesion location, gender, age, treatment type or duration. Post-hoc log-Rank pairwise comparisons revealed that lesions initially treated using surgery alone had significantly reduced time to recurrence (21.1 ± 5.6 months) compared to previous topical treatment with MMC (with or without surgery) (29.6 ± 4.7 months) (p = 0.04) and primary OSSN (23.2 ± 1.8 months) (p = 0.09). Conclusions Topical MMC and IFN are an effective treatment modality for a wide range of non-invasive OSSN. Topical therapy avoids the morbidity of excisional surgery with equivalent or reduced recurrence rates and should be considered as primary therapy.
Resumo:
Purpose: To examine between eye differences in corneal higher order aberrations and topographical characteristics in a range of refractive error groups. Methods: One hundred and seventy subjects were recruited including; 50 emmetropic isometropes, 48 myopic isometropes (spherical equivalent anisometropia ≤ 0.75 D), 50 myopic anisometropes (spherical equivalent anisometropia ≥ 1.00 D) and 22 keratoconics. The corneal topography of each eye was captured using the E300 videokeratoscope (Medmont, Victoria, Australia) and analyzed using custom written software. All left eye data were rotated about the vertical midline to account for enantiomorphism. Corneal height data were used to calculate the corneal wavefront error using a ray tracing procedure and fit with Zernike polynomials (up to and including the eighth radial order). The wavefront was centred on the line of sight by using the pupil offset value from the pupil detection function in the videokeratoscope. Refractive power maps were analysed to assess corneal sphero-cylindrical power vectors. Differences between the more myopic (or more advanced eye for keratoconics) and the less myopic (advanced) eye were examined. Results: Over a 6 mm diameter, the cornea of the more myopic eye was significantly steeper (refractive power vector M) compared to the fellow eye in both anisometropes (0.10 ± 0.27 D steeper, p = 0.01) and keratoconics (2.54 ± 2.32 D steeper, p < 0.001) while no significant interocular difference was observed for isometropic emmetropes (-0.03 ± 0.32 D) or isometropic myopes (0.02 ± 0.30 D) (both p > 0.05). In keratoconic eyes, the between eye difference in corneal refractive power was greatest inferiorly (associated with cone location). Similarly, in myopic anisometropes, the more myopic eye displayed a central region of significant inferior corneal steepening (0.15 ± 0.42 D steeper) relative to the fellow eye (p = 0.01). Significant interocular differences in higher order aberrations were only observed in the keratoconic group for; vertical trefoil C(3,-3), horizontal coma C(3,1) secondary astigmatism along 45 C(4, -2) (p < 0.05) and vertical coma C(3,-1) (p < 0.001). The interocular difference in vertical pupil decentration (relative to the corneal vertex normal) increased with between eye asymmetry in refraction (isometropia 0.00 ± 0.09, anisometropia 0.03 ± 0.15 and keratoconus 0.08 ± 0.16 mm) as did the interocular difference in corneal vertical coma C (3,-1) (isometropia -0.006 ± 0.142, anisometropia -0.037 ± 0.195 and keratoconus -1.243 ± 0.936 μm) but only reached statistical significance for pair-wise comparisons between the isometropic and keratoconic groups. Conclusions: There is a high degree of corneal symmetry between the fellow eyes of myopic and emmetropic isometropes. Interocular differences in corneal topography and higher order aberrations are more apparent in myopic anisometropes and keratoconics due to regional (primarily inferior) differences in topography and between eye differences in vertical pupil decentration relative to the corneal vertex normal. Interocular asymmetries in corneal optics appear to be associated with anisometropic refractive development.
Resumo:
Bayesian networks (BNs) provide a statistical modelling framework which is ideally suited for modelling the many factors and components of complex problems such as healthcare-acquired infections. The methicillin-resistant Staphylococcus aureus (MRSA) organism is particularly troublesome since it is resistant to standard treatments for Staph infections. Overcrowding and understa�ng are believed to increase infection transmission rates and also to inhibit the effectiveness of disease control measures. Clearly the mechanisms behind MRSA transmission and containment are very complicated and control strategies may only be e�ective when used in combination. BNs are growing in popularity in general and in medical sciences in particular. A recent Current Content search of the number of published BN journal articles showed a fi�ve fold increase in general and a six fold increase in medical and veterinary science from 2000 to 2009. This chapter introduces the reader to Bayesian network (BN) modelling and an iterative modelling approach to build and test the BN created to investigate the possible role of high bed occupancy on transmission of MRSA while simultaneously taking into account other risk factors.
Resumo:
Purpose. To compare the on-road driving performance of visually impaired drivers using bioptic telescopes with age-matched controls. Methods. Participants included 23 persons (mean age = 33 ± 12 years) with visual acuity of 20/63 to 20/200 who were legally licensed to drive through a state bioptic driving program, and 23 visually normal age-matched controls (mean age = 33 ± 12 years). On-road driving was assessed in an instrumented dual-brake vehicle along 14.6 miles of city, suburban, and controlled-access highways. Two backseat evaluators independently rated driving performance using a standardized scoring system. Vehicle control was assessed through vehicle instrumentation and video recordings used to evaluate head movements, lane-keeping, pedestrian detection, and frequency of bioptic telescope use. Results. Ninety-six percent (22/23) of bioptic drivers and 100% (23/23) of controls were rated as safe to drive by the evaluators. There were no group differences for pedestrian detection, or ratings for scanning, speed, gap judgments, braking, indicator use, or obeying signs/signals. Bioptic drivers received worse ratings than controls for lane position and steering steadiness and had lower rates of correct sign and traffic signal recognition. Bioptic drivers made significantly more right head movements, drove more often over the right-hand lane marking, and exhibited more sudden braking than controls. Conclusions. Drivers with central vision loss who are licensed to drive through a bioptic driving program can display proficient on-road driving skills. This raises questions regarding the validity of denying such drivers a license without the opportunity to train with a bioptic telescope and undergo on-road evaluation.
Resumo:
Purpose: In animal models hemi-field deprivation results in localised, graded vitreous chamber elongation and presumably deprivation induced localised changes in retinal processing. The aim of this research was to determine if there are variations in ERG responses across the retina in normal chick eyes and to examine the effect of hemi-field and full-field deprivation on ERG responses across the retina and at earlier times than have previously been examined electrophysiologically. Methods: Chicks were either untreated, wore monocular full-diffusers or half-diffusers (depriving nasal retina) (n = 6-8 each group) from day 8. mfERG responses were measured using the VERIS mfERG system across the central 18.2º× 16.7º (H × V) field. The stimulus consisted of 61 unscaled hexagons with each hexagon modulated between black and white according to a pseudorandom binary m-sequence. The mfERG was measured on day 12 in untreated chicks, following 4 days of hemi-field diffuser wear, and 2, 48 and 96 h after application of full-field diffusers. Results: The ERG response of untreated chick eyes did not vary across the measured field; there was no effect of retinal location on the N1-P1 amplitude (p = 0.108) or on P1 implicit time (p > 0.05). This finding is consistent with retinal ganglion cell density of the chick varying by only a factor of two across the entire retina. Half-diffusers produced a ramped retina and a graded effect of negative lens correction (p < 0.0001); changes in retinal processing were localized. The untreated retina showed increasing complexity of the ERG waveform with development; form-deprivation prevented the increasing complexity of the response at the 2, 48 and 96 h measurement times and produced alterations in response timing. Conclusions: Form-deprivation and its concomitant loss of image contrast and high spatial frequency images prevented development of the ERG responses, consistent with a disruption of development of retinal feedback systems. The characterisation of ERG responses in normal and deprived chick eyes across the retina allows the assessment of concurrent visual and retinal manipulations in this model. (Ophthalmic & Physiological Optics © 2013 The College of Optometrists.)
Resumo:
Intravitreal injections of GABA antagonists, dopamine agonists and brief periods of normal vision have been shown separately to inhibit form-deprivation myopia (FDM). Our study had three aims: (i) establish whether GABAergic agents modify the myopia protective effect of normal vision, (ii) investigate the receptor sub-type specificity of any observed effect, and (iii) consider an interaction with the dopamine (DA) system. Prior to the period of normal vision GABAergic agents were applied either (i) individually, (ii) in combination with other GABAergic agents (an agonist with an antagonist), or (iii) in combination with DA agonists and antagonists. Water injections were given to groups not receiving drug treatments so that all experimental eyes received intravitreal injections. As shown previously, constant form-deprivation resulted in high myopia and when diffusers were removed for 2 h per day the period of normal vision greatly reduced the FDM that developed. GABA agonists inhibited the protective effect of normal vision whereas antagonists had the opposite effect. GABAA/C agonists and D2 DA antagonists when used in combination were additive in suppressing the protective effect of normal vision. A D2 DA agonist restored some of the protective effect of normal vision that was inhibited by a GABA agonist (muscimol). The protective effect of normal vision against form-deprivation is modifiable by both the GABAergic and DAergic pathways.
Resumo:
The purpose of this study is to determine visual performance in water, including the influence of pupil size. The water en-vironment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition in order to to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture dete-riorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree with esti-mates for water of 0.39, 0.70 and 1.13 cycles/degree. In conclusion, vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
Purpose Contrast adaptation has been speculated to be an error signal for emmetropization. Myopic children exhibit higher contrast adaptation than emmetropic children. This study aimed to determine whether contrast adaptation varies with the type of text viewed by emmetropic and myopic young adults. Methods Baseline contrast sensitivity was determined in 25 emmetropic and 25 spectacle-corrected myopic young adults for 0.5, 1.2, 2.7, 4.4, and 6.2 cycles per degree (cpd) horizontal sine wave gratings. The adults spent periods looking at a 6.2 cpd high-contrast horizontal grating and reading lines of English and Chinese text (these texts comprised 1.2 cpd row and 6 cpd stroke frequencies). The effects of these near tasks on contrast sensitivity were determined, with decreases in sensitivity indicating contrast adaptation. Results Contrast adaptation was affected by the near task (F2,672 = 43.0; P < 0.001). Adaptation was greater for the grating task (0.13 ± 0.17 log unit, averaged across all frequencies) than reading tasks, but there was no significant difference between the two reading tasks (English 0.05 ± 0.13 log unit versus Chinese 0.04 ± 0.13 log unit). The myopic group showed significantly greater adaptation (by 0.04, 0.04, and 0.05 log units for English, Chinese, and grating tasks, respectively) than the emmetropic group (F1,48 = 5.0; P = 0.03). Conclusions In young adults, reading Chinese text induced similar contrast adaptation as reading English text. Myopes exhibited greater contrast adaptation than emmetropes. Contrast adaptation, independent of text type, might be associated with myopia development.
Resumo:
Purpose: Inaccurate accommodation during nearwork and subsequent accommodative hysteresis may influence myopia development. Myopia is highly prevalent in Singapore; an untested theory is that Chinese children are prone to these accommodation characteristics. We measured the accuracy of accommodation responses during and nearwork-induced transient myopia (NITM) after periods spent reading Chinese and English texts. Methods: Refractions of 40 emmetropic and 43 myopic children were measured with a free-space autorefractor for four reading tasks of 10-minute durations: Chinese (SimSun, 10.5 points) and English (Times New Roman, 12 points) texts at 25 cm and 33 cm. Accuracy was obtained by subtracting accommodation response from accommodation demand. Nearwork-induced transient myopia was obtained by subtracting pretask distance refraction from posttask refraction, and regression was determined as the time for the posttask refraction to return to pretask levels. Results: There were significant, but small, effects of text type (Chinese, 0.97 ± 0.32 diopters [D] vs. English, 1.00 ± 0.37 D; F1,1230 = 7.24, p = 0.007) and reading distance (33 cm, 1.01 ± 0.30 D vs. 25 cm, 0.97 ± 0.39 D; F1,1230 = 7.74, p = 0.005) on accommodation accuracy across all participants. Accuracy was similar for emmetropic and myopic children across all reading tasks. Neither text type nor reading distance had significant effects on NITM or its regression. Myopes had greater NITM (by 0.07 D) (F1,81 = 5.05, p = 0.03) that took longer (by 50s) (F1,81 = 31.08, p < 0.01) to dissipate. Conclusions: Reading Chinese text caused smaller accommodative lags than reading English text, but the small differences were not clinically significant. Myopic children had significantly greater NITM and longer regression than emmetropic children for both texts. Whether differences in NITM are a cause or consequence of myopia cannot be answered from this study.
Resumo:
We read with interest the article entitled ‘Population spherical aberration: associations with ametropia, age, corneal curvature, and image quality’ by Amanda C Kingston and Ian G Cox (2013). The authors provided higher order aberrations data for a sample of 1124 eyes and performed correlation analyses to compare higher order aberrations with refraction and biometry data, such as spherical equivalent power and corneal curvature. Special attention was drawn to spherical aberration...