610 resultados para Tumour Cells
Resumo:
In this study, we have demonstrated that the preproghrelin derived hormones, ghrelin and obestatin, may play a role in ovarian cancer. Ghrelin and obestatin stimulated an increase in cell migration in ovarian cancer cell lines and may play a role in cancer progression. Ovarian cancer is the leading cause of death among gynaecological cancers and is the sixth most common cause of cancer-related deaths in women in developed countries. As ovarian cancer is difficult to diagnose at a low tumour grade, two thirds of ovarian cancers are not diagnosed until the late stages of cancer development resulting in a poor prognosis for the patient. As a result, current treatment methods are limited and not ideal. There is an urgent need for improved diagnostic markers, as well better therapeutic approaches and adjunctive therapies for this disease. Ghrelin has a number of important physiological effects, including roles in appetite regulation and the stimulation of growth hormone release. It is also involved in regulating the immune, cardiovascular and reproductive systems and regulates sleep, memory and anxiety, and energy metabolism. Over the last decade, the ghrelin axis, (which includes the hormones ghrelin and obestatin and their receptors), has been implicated in the pathogenesis of many human diseases and it may t may also play an important role in the development of cancer. Ghrelin is a 28 amino acid peptide hormone that exists in two forms. Acyl ghrelin (usually referred to as ghrelin), has a unique n-octanoic acid post-translational modification (which is catalysed by ghrelin O-acyltransferase, GOAT), and desacyl ghrelin, which is a non-octanoylated form. Octanoylated ghrelin acts through the growth hormone secretagogue receptor type 1a (GHSR1a). GHSR1b, an alternatively spliced isoform of GHSR, is C-terminally truncated and does not bind ghrelin. Ghrelin has been implicated in the pathophysiology of a number of diseases Obestatin is a 23 amino acid, C-terminally amidated peptide which is derived from preproghrelin. Although GPR39 was originally thought to be the obestatin receptor this has been disproven, and its receptor remains unknown. Obestatin may have as diverse range of roles as ghrelin. Obestatin improves memory, inhibits thirst and anxiety, increases pancreatic juice secretion and has cardioprotective effects. Obestatin also has been shown to regulate cell proliferation, differentiation and apoptosis in some cell types. Prior to this study, little was known regarding the functions and mechanisms of action ghrelin and obestatin in ovarian cancer. In this study it was demonstrated that the full length ghrelin, GHSR1b and GOAT mRNA transcripts were expressed in all of the ovarian-derived cell lines examined (SKOV3, OV-MZ-6 and hOSE 17.1), however, these cell lines did not express GHSR1a. Ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for ghrelin, obestatin, and GOAT, but not GHSR1a, or GHSR1b. No correlations between cancer grade and the level of expression of these transcripts were observed. This study demonstrated for the first time that both ghrelin and obestatin increase cell migration in ovarian cancer cell lines. Treatment with ghrelin (for 72 hours) significantly increased cell migration in the SKOV3 and OV-MZ-6 ovarian cancer cell lines. Ghrelin (100 nM) stimulated cell migration in the SKOV3 (2.64 +/- 1.08 fold, p <0.05) and OV-MZ-6 (1.65 +/- 0.31 fold, p <0.05) ovarian cancer cell lines, but not in the representative normal cell line hOSE 17.1. This increase in migration was not accompanied by an increase in cell invasion through Matrigel. In contrast to other cancer types, ghrelin had no effect on proliferation. Ghrelin treatment (10nM) significantly decreased attachment of the SKOV3 ovarian cancer cell line to collagen IV (24.7 +/- 10.0 %, p <0.05), however, there were no changes in attachment to the other extracellular matrix molecules (ECM) tested (fibronectin, vitronectin and collagen I), and there were no changes in attachment to any of the ECM molecules in the OV-MZ-6 or hOSE 17.1 cell lines. It is, therefore, unclear if ghrelin plays a role in cell attachment in ovarian cancer. As ghrelin has previously been demonstrated to signal through the ERK1/2 pathway in cancer, we investigated ERK1/2 signalling in ovarian cancer cell lines. In the SKOV3 ovarian cancer cell line, a reduction in ERK1/2 phosphorylation (0.58 fold +/- 0.23, p <0.05) in response to 100 nM ghrelin treatment was observed, while no significant change in ERK1/2 signalling was seen in the OV-MZ-6 cell line with treatment. This suggests that this pathway is unlikely to be involved in mediating the increased migration seen in the ovarian cancer cell lines with ghrelin treatment. In this study ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for obestatin, however, no correlation between cancer grade and level of obestatin transcript expression was observed. In the ovarian-derived cell lines studied (SKOV3, OV-MZ-6 and hOSE 17.1) it was demonstrated that the full length preproghrelin mRNA transcripts were expressed in all cell lines, suggesting they have the ability to produce mature obestatin. This is the first study to demonstrate that obestatin stimulates cell migration and cell invasion. Obestatin induced a significant increase in migration in the SKOV3 ovarian cancer cell line with 10 nM (2.80 +/- 0.52 fold, p <0.05) and 100 nM treatments (3.12 +/- 0.68 fold, p <0.05) and in the OV-MZ-6 cancer cell line with 10 nM (2.04 +/- 0.10 fold, p <0.01) and 100 nM treatments (2.00 +/- 0.37 fold, p <0.05). Obestatin treatment did no affect cell migration in the hOSE 17.1normal ovarian epithelial cell line. Obestatin treatment (100 nM) also stimulated a significant increase in cell invasion in the OV-MZ-6 ovarian cancer cell line (1.45 fold +/- 0.13, p <0.05) and in the hOSE17.1 normal ovarian cell line cells (1.40 fold +/- 0.04 and 1.55 fold +/- 0.05 respectively, p <0.01) with 10 nM and 100 nM treatments. Obestatin treatment did not stimulate cell invasion in the SKOV3 ovarian cancer cell line. This lack of obestatin-stimulated invasion in the SKOV3 cell line may be a cell line specific result. In this study, obestatin did not stimulate cell proliferation in the ovarian cell lines and it has previously been shown to have no effect on cell proliferation in the BON-1 pancreatic neuroendocrine and GC rat somatotroph tumour cell lines. In contrast, obestatin has been shown to affect cell proliferation in gastric and thyroid cancer cell lines, and in some normal cell lines. Obestatin also had no effect on attachment of any of the cell lines to any of the ECM components tested (fibronectin, vitronectin, collagen I and collagen IV). The mechanism of action of obestatin was investigated further using a two dimensional-difference in gel electrophoresis (2D-DIGE) proteomic approach. After treatment with obestating (0, 10 and 100 nM), SKOV3 ovarian cancer and hOSE 17.1 normal ovarian cell lines were collected and 2D-DIGE analysis and mass spectrometry were performed to identify proteins that were differentially expressed in response to treatment. Twenty-six differentially expressed proteins were identified and analysed using Ingenuity Pathway Analysis (IPA). This linked 16 of these proteins in a network. The analysis suggested that the ERK1/2 MAPK pathway was a major mediator of obestatin action. ERK1/2 has previously been shown to be associated with obestatin-stimulated cell proliferation and with the anti-apoptotic effects of obestatin. Activation of the ERK1/2 signalling pathway by obestatin was, therefore, investigated in the SKOV3 and OV-MZ-6 ovarian cancer cell lines using anti-active antibodies and Western immunoblots. Obestatin treatment significantly decreased ERK1/2 phosphorylation at higher obestatin concentrations in both the SKOV3 (100 nM and 1000 nM) and OV-MZ-6 (1000 nM) cell lines compared to the untreated controls. Currently, very little is known about obestatin signalling in cancer. This thesis has demonstrated for the first time that the ghrelin axis may play a role in ovarian cancer migration. Ghrelin and obestatin increased cell migration in ovarian cancer cell lines, indicating that they may be a useful target for therapies that reduce ovarian cancer progression. Further studies investigating the role of the ghrelin axis using in vivo ovarian cancer metastasis models are warranted.
Resumo:
The cell cycle is a carefully choreographed series of phases that when executed successfully will allow the complete replication of the genome and the equal division of the genome and other cellular content into two independent daughter cells. The inability of the cell to execute cell division successfully can result in either checkpoint activation to allow repair and/or apoptosis and/or mutations/errors that may or may not lead to tumourgenesis. Cyclin A/CDK2 is the primary cyclin/CDK regulating G2 phase progression of the cell cycle. Cyclin A/CDK2 activity peaks in G2 phase and its inhibition causes a G2 phase delay that we have termed 'the cyclin A/CDK2 dependent G2 delay'. Understanding the key pathways that are involved in the cyclin A/CDK2 dependent G2 delay has been the primary focus of this study. Characterising the cyclin A/CDK2 dependent G2 delay revealed accumulated levels of the inactive form of the mitotic regulator, cyclin B/CDK1. Surprisingly, there was also increased microtubule nucleation at the centrosomes, and the centrosomes stained for markers of cyclin B/CDK1 activity. Both microtubule nucleation at the centrosomes and phosphoprotein markers were lost with short-term treatment of CDK1/2 inhibition. Cyclin A/CDK2 localised at the centrosomes in late G2 phase after separation of the centrosomes but before the start of prophase. Thus G2 phase cyclin A/CDK2 controls the timing of entry into mitosis by controlling the subsequent activation of cyclin B/CDK1, but also has an unexpected role in coordinating the activation of cyclin B/CDK1 at the centrosome and in the nucleus. In addition to regulating the timing of cyclin B/CDK1 activation and entry into mitosis in the unperturbed cell cycle, cyclin A/CDK2 also was shown to have a role in G2 phase checkpoint recovery. Known G2 phase regulators were investigated to determine whether they had a role in imposing the cyclin A/ CDK2 dependent G2 delay. Examination of the critical G2 checkpoint arrest protein, Chk1, which also has a role during unperturbed G2/M phases revealed the presence of activated Chk1 in G2 phase, in a range of cell lines. Activated Chk1 levels were shown to accumulate in cyclin A/CDK2 depleted/inhibited cells. Further investigations revealed that Chk1, but not Chk2, depletion could reverse the cyclin A/CDK2 dependent G2 delay. It was confirmed that the accumulative activation of Chk1 was not a consequence of DNA damage induced by cyclin A depletion. The potential of cyclin A/CDK2 to regulate Chk1 revealed that the inhibitory phosphorylations, Ser286 and Ser301, were not directly catalysed by cyclin A/CDK2 in G2 phase to regulate mitotic entry. It appeared that the ability of cyclin A/CDK2 to regulate cyclin B/CDK1 activation impacted cyclin B/CDK1s phosphorylation of Chk1 on Ser286 and Ser301, thereby contributing to the delay in G2/M phase progression. Chk1 inhibition/depletion partially abrogated the cyclin A/CDK2 dependent G2 delay, and was less effective in abrogating G2 phase checkpoint suggesting that other cyclin A/CDK2 dependent mechanisms contributed to these roles of cyclin A/CDK2. In an attempt to identify these other contributing factors another G2/M phase regulator known to be regulated by cyclin A/CDK2, Cdh1 and its substrates Plk1 and Claspin were examined. Cdh1 levels were reduced in cyclin A/CDK2 depleted/inhibited cells although this had little effect on Plk1, a known Cdh1 substrate. However, the level of another substrate, Claspin, was increased. Cdh1 depletion mimicked the effect of cyclin A depletion but to a weaker extent and was sufficient at increasing Claspin levels similar to the increase caused by cyclin A depletion. Co-depletion of cyclin A and Claspin blocked the accumulation of activated Chk1 normally seen with cyclin A depletion alone. However Claspin depletion alone did not reduce the cyclin A/CDK2 dependent G2 delay but this is likely to be a result of inhibition of S phase roles of Claspin. Together, these data suggest that cyclin A/CDK2 regulates a number of different mechanisms that contribute to G2/M phase progression. Here it has been demonstrated that in normal G2/M progression and possibly to a lesser extent in G2 phase checkpoint recovery, cyclin A/CDK2 regulates the level of Cdh1 which in turn affects at least one of its substrates, Claspin, and consequently results in the increased level of activated Chk1 observed. However, the involvement of Cdh1 and Claspin alone does not explain the G2 phase delay observed with cyclin A/CDK2 depletion/inhibition. It is likely that other mechanisms, possibly including cyclin A/CDK2 regulation of Wee1 and FoxM1, as reported by others, combine with the mechanism described here to regulate normal G2/M phase progression and G2 phase checkpoint recovery. These findings support the critical role for cyclin A/CDK2 in regulating progression into mitosis and suggest that upstream regulators of cyclin A/CDK2 activation will also be critical controllers of this cell cycle transition. The pathways that work to co-ordinate cell cycle progression are very intricate and deciphering these pathways, required for normal cell cycle progression, is key to understanding tumour development. By understanding cell cycle regulatory pathways it will allow the identification of the pathway/s and their mechanism/s that become affected in tumourgenesis. This will lead to the development of better targeted therapies, inferring better efficacy with fewer side effects than commonly seen with the use of traditional therapies, such as chemotherapy. Furthermore, this has the potential to positively impact the development of personalised medicines and the customisation of healthcare.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
Abstract: Monoamine Oxidase (MAO) enzymes catabolise, and thus modulate abundance of, neurotransmitters in the brain. Variation in MAO enzyme activity has been linked to alcohol abuse behaviour, although the molecular mechanisms underlying this association are not understood. The present study evaluated relative gene-transcript abundance of MAO-A and MAO-B in the SH-SY5Y human neuroblastoma cell-line in response to ethanol exposure and following ethanol withdrawal. We found that each isoform of MAO was significantly transcriptionally up-regulated 55-80% in response to 100mM ethanol exposure. This trend was maintained following prolonged exposures (24 h-72 h) and with short exposures (24 h) followed by a period of ethanol withdrawal, suggesting that the transcriptional regulation is the result of a cellular change occurring within the first 24 hours of ethanol exposure. These results suggest a role for MAO transcriptional regulation in the complex neurobiochemical changes underlying alcohol addiction.
Resumo:
Purpose/Objective: The basis for poor outcomes in some patients post transfusion remains largely unknown. Despite leukodepletion, there is still evidence of immunomodulatory effects of transfusion that require further study. In addition, there is evidence that the age of blood components transfused significantly affects patient outcomes. Myeloid dendritic cell (DC) and monocyte immune function were studied utilising an in vitro whole blood model of transfusion. Materials and methods: Freshly collected (‘recipient’) whole blood was cultured with ABO compatible leukodepleted PRBC at 25% blood replacement-volume (6hrs). PRBC were assayed at [Day (D) 2, 14, 28and 42 (date-of expiry)]. In parallel, LPS or Zymosan (Zy) were added to mimic infection. Recipients were maintained for the duration of the time course (2 recipients, 4 PRBC units, n = 8).Recipient DC and monocyte intracellular cytokines and chemokines (IL-6, IL-10, IL-12,TNF-a, IL-1a, IL-8, IP-10, MIP-1a, MIP-1b, MCP-1) were measured using flow cytometry. Changes in immune response were calculated by comparison to a parallel no transfusion control (Wilcoxin matched pairs). Influence of storage age was calculated using ANOVA. Results: Significant suppression of DC and monocyte inflammatory responses were evident. DC and monocyte production of IL-1a was reduced following exposure to PRBC regardless of storage age (P < 0.05 at all time points). Storage independent PRBC mediated suppression of DC and monocyte IL-1a was also evident in cultures costimulated with Zy. In cultures co-stimulated with either LPS or Zy, significant suppression of DC and monocyte TNF-a and IL-6 was also evident. PRBC storage attenuated monocyte TNF-a production when co-cultured with LPS (P < 0.01 ANOVA). DC and monocyte production of MIP-1a was significantly reduced following exposure to PRBC (DC: P < 0.05 at D2, 28, 42; Monocyte P < 0.05 all time points). In cultures co-stimulated with LPS and zymosan, a similar suppression of MIP-1a production was also evident, and production of both DC and monocyte MIP-1b and IP-10 were also significantly reduced. Conclusions: The complexity of the transfusion context was reflected in the whole blood approach utilised. Significant suppression of these key DC and monocyte immune responses may contribute to patient outcomes, such as increased risk of infection and longer hospital stay, following blood transfusion.
Resumo:
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.
Resumo:
Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis- related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.
Resumo:
A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.
Resumo:
Using ZnO seed layers, an efficient approach for enhancing the heterointerface quality of electrodeposited ZnO–Cu2O solar cells is devised. We introduce a sputtered ZnO seed layer followed by the sequential electrodeposition of ZnO and Cu2O films. The seed layer is employed to control the growth and crystallinity and to augment the surface area of the electrodeposited ZnO films, thereby tuning the quality of the ZnO–Cu2O heterointerface. Additionally, the seed layer also assists in forming high quality ZnO films, with no pin-holes, in a high pH electrolyte solution. X-ray electron diffraction patterns, scanning electron and atomic force microscopy images, as well as photovoltaic measurements, clearly demonstrate that the incorporation of certain seed layers results in the alteration of the heterointerface quality, a change in the heterojunction area and the crystallinity of the films near the junction, which influence the current density of photovoltaic devices.
Resumo:
Despite negative press, the future of lithium-based battery chemistries appears positive.
Resumo:
Endothelin-1 (ET-1) is a potent vasoactive peptide and a hypoxia-inducible angiogenic growth factor associated with the development and growth of solid tumours. This study evaluated the expression of big endothelin-1 (big ET-1), a stable precursor of ET-1, and ET-1 in non-small cell lung cancer (NSCLC). Big ET-1 expression was evaluated in paraffin-embedded tissue sections from 10 NSCLC tumours using immunohistochemistry and in situ hybridisation. The production of big ET-1 and ET-1 was studied in six established NSCLC cell lines. The plasma concentrations of big ET-1 were measured in 30 patients with proven NSCLC prior to chemotherapy by means of a sandwich enzyme-linked immunoassay and compared to levels in 20 normal controls. Big ET-1 immunostaining was detected in the cancer cells of all tumours studied. Using in situ hybridisation, tumour cell big ET-1 mRNA expression was demonstrated in all samples. All six NSCLC cell lines expressed ET-1, with big ET-1 being detected in three. The median big ET-1 plasma level in patients with NSCLC was 5.4 pg/mL (range 0-22.7 pg/mL) and was significantly elevated compared to median big ET-1 plasma levels in controls, 2.1 pg/mL (1.2-13.4 pg/mL) (p=0.0001). Furthermore, patients with plasma big ET-1 levels above the normal range (upper tertile) had a worse outcome (p=0.01). In conclusion, big ET-1/ET-1 is expressed by resected NSCLC specimens and tumour cell lines. Plasma big ET-1 levels are elevated in NSCLC patients compared to controls with levels >7.8 pg/mL being associated with a worse outcome. The development of selective ET-1 antagonists such as Atrasentan indicates that ET-1 may be a therapeutic target in NSCLC. © 2004 Wichtig Editore.
Resumo:
Background IL-23 is a member of the IL-6 super-family and plays key roles in cancer. Very little is currently known about the role of IL-23 in non-small cell lung cancer (NSCLC). Methods RT-PCR and chromatin immunopreciptiation (ChIP) were used to examine the levels, epigenetic regulation and effects of various drugs (DNA methyltransferase inhibitors, Histone Deacetylase inhibitors and Gemcitabine) on IL-23 expression in NSCLC cells and macrophages. The effects of recombinant IL-23 protein on cellular proliferation were examined by MTT assay. Statistical analysis consisted of Student's t-test or one way analysis of variance (ANOVA) where groups in the experiment were three or more. Results In a cohort of primary non-small cell lung cancer (NSCLC) tumours, IL-23A expression was significantly elevated in patient tumour samples (p<0.05). IL-23A expression is epigenetically regulated through histone post-translational modifications and DNA CpG methylation. Gemcitabine, a chemotherapy drug indicated for first-line treatment of NSCLC also induced IL-23A expression. Recombinant IL-23 significantly increased cellular proliferation in NSCLC cell lines. Conclusions These results may therefore have important implications for treating NSCLC patients with either epigenetic targeted therapies or Gemcitabine. © 2012 Elsevier Ireland Ltd.
Resumo:
Cell migration is fundamental to many different physiological processes including embryonic development, inflammation and wound healing. Given the range and importance cell migration plays a number of assays have been developed to measure different aspects of cell migration. Here we describe two different methods to analyze cell migration. The first method analyzes the migration of fluorescently tagged cells using Boyden chambers and FACs and the second looks at migration properties using time-lapse microscopy.
Resumo:
Background: Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease. Methods: TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB 2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results: TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB 2levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. Conclusion: TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC. © 2011 Cathcart et al; licensee BioMed Central Ltd.