418 resultados para Time duration.
Resumo:
Exercise interventions during adjuvant cancer treatment have been shown to increase functional capacity, relieve fatigue and distress and in one recent study, assist chemotherapy completion. These studies have been limited to breast, prostate or mixed cancer groups and it is not yet known if a similar intervention is even feasible among women diagnosed with ovarian cancer. Women undergoing treatment for ovarian cancer commonly have extensive pelvic surgery followed by high intensity chemotherapy. It is hypothesized that women with ovarian cancer may benefit most from a customised exercise intervention during chemotherapy treatment. This could reduce the number and severity of chemotherapy-related side-effects and optimize treatment adherence. Hence, the aim of the research was to assess feasibility and acceptability of a walking intervention in women with ovarian cancer whilst undergoing chemotherapy, as well as pre-post intervention changes in a range of physical and psychological outcomes. Newly diagnosed women with ovarian cancer were recruited from the Royal Brisbane and Women’s Hospital (RBWH), to participate in a walking program throughout chemotherapy. The study used a one group pre- post-intervention test design. Baseline (conducted following surgery but prior to the first or second chemotherapy cycles) and follow-up (conducted three weeks after the last chemotherapy dose was received) assessments were performed. To accommodate changes in side-effects associated with treatment, specific weekly walking targets with respect to frequency, intensity and duration, were individualised for each participant. To assess feasibility, adherence and compliance with prescribed walking sessions, withdrawals and adverse events were recorded. Physical and psychological outcomes assessed included functional capacity, body composition, anxiety and depression, symptoms experienced during treatment and quality of life. Chemotherapy completion data was also documented and self-reported program helpfulness was assessed using a questionnaire post intervention. Forty-two women were invited to participate. Nine women were recruited, all of whom completed the program. There were no adverse events associated with participating in the intervention and all women reported that the walking program was helpful during their neo-adjuvant or adjuvant chemotherapy treatment. Adherence and compliance to the walking prescription was high. On average, women achieved at least two of their three individual weekly prescription targets 83% of the time (range 42% to 94%). Positive changes were found in functional capacity and quality of life, in addition to reductions in the number and intensity of treatment-associated symptoms over the course of the intervention period. Functional capacity increased for all nine women from baseline to follow-up assessment, with improvements ranging from 10% to 51%. Quality of life improvements were also noted, especially in the physical well-being scale (baseline: median 18; follow-up: median 23). Treatment symptoms reduced in presence and severity, specifically, in constipation, pain and fatigue, post intervention. These positive yet preliminary results suggest that a walking intervention for women receiving chemotherapy for ovarian cancer is safe, feasible and acceptable. Importantly, women perceived the program to be helpful and rewarding, despite being conducted during a time typically associated with elevated distress and treatment symptoms that are often severe enough to alter or cease chemotherapy prescription.
Resumo:
A Networked Control System (NCS) is a feedback-driven control system wherein the control loops are closed through a real-time network. Control and feedback signals in an NCS are exchanged among the system’s components in the form of information packets via the network. Nowadays, wireless technologies such as IEEE802.11 are being introduced to modern NCSs as they offer better scalability, larger bandwidth and lower costs. However, this type of network is not designed for NCSs because it introduces a large amount of dropped data, and unpredictable and long transmission latencies due to the characteristics of wireless channels, which are not acceptable for real-time control systems. Real-time control is a class of time-critical application which requires lossless data transmission, small and deterministic delays and jitter. For a real-time control system, network-introduced problems may degrade the system’s performance significantly or even cause system instability. It is therefore important to develop solutions to satisfy real-time requirements in terms of delays, jitter and data losses, and guarantee high levels of performance for time-critical communications in Wireless Networked Control Systems (WNCSs). To improve or even guarantee real-time performance in wireless control systems, this thesis presents several network layout strategies and a new transport layer protocol. Firstly, real-time performances in regard to data transmission delays and reliability of IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis of the simulation results, some network layout strategies are presented to achieve relatively small and deterministic network-introduced latencies and reduce data loss rates. These are effective in providing better network performance without performance degradation of other services. After the investigation into the layout strategies, the thesis presents a new transport protocol which is more effcient than UDP and TCP for guaranteeing reliable and time-critical communications in WNCSs. From the networking perspective, introducing appropriate communication schemes, modifying existing network protocols and devising new protocols, have been the most effective and popular ways to improve or even guarantee real-time performance to a certain extent. Most previously proposed schemes and protocols were designed for real-time multimedia communication and they are not suitable for real-time control systems. Therefore, devising a new network protocol that is able to satisfy real-time requirements in WNCSs is the main objective of this research project. The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new network protocol presented in this thesis. Retransmitting unacknowledged data packets is effective in compensating for data losses. However, every data packet in realtime control systems has a deadline and data is assumed invalid or even harmful when its deadline expires. CRETP performs data retransmission only in the case that data is still valid, which guarantees data timeliness and saves memory and network resources. A trade-off between delivery reliability, transmission latency and network resources can be achieved by the conditional retransmission mechanism. Evaluation of protocol performance was conducted through extensive simulations. Comparative studies between CRETP, UDP and TCP were also performed. These results showed that CRETP significantly: 1). improved reliability of communication, 2). guaranteed validity of received data, 3). reduced transmission latency to an acceptable value, and 4). made delays relatively deterministic and predictable. Furthermore, CRETP achieved the best overall performance in comparative studies which makes it the most suitable transport protocol among the three for real-time communications in a WNCS.
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.
Resumo:
This paper aims to develop an implicit meshless approach based on the radial basis function (RBF) for numerical simulation of time fractional diffusion equations. The meshless RBF interpolation is firstly briefed. The discrete equations for two-dimensional time fractional diffusion equation (FDE) are obtained by using the meshless RBF shape functions and the strong-forms of the time FDE. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical examples with different problem domains and different nodal distributions are studied to validate and investigate accuracy and efficiency of the newly developed meshless approach. It has proven that the present meshless formulation is very effective for modeling and simulation of fractional differential equations.
Resumo:
The antiretroviral therapy (ART) program for People Living with HIV/AIDS (PLHIV) in Vietnam has been scaled up rapidly in recent years (from 50 clients in 2003 to almost 38,000 in 2009). ART success is highly dependent on the ability of the patients to fully adhere to the prescribed treatment regimen. Despite the remarkable extension of ART programs in Vietnam, HIV/AIDS program managers still have little reliable data on levels of ART adherence and factors that might promote or reduce adherence. Several previous studies in Vietnam estimated extremely high levels of ART adherence among their samples, although there are reasons to question the veracity of the conclusion that adherence is nearly perfect. Further, no study has quantitatively assessed the factors influencing ART adherence. In order to reduce these gaps, this study was designed to include several phases and used a multi-method approach to examine levels of ART non-adherence and its relationship to a range of demographic, clinical, social and psychological factors. The study began with an exploratory qualitative phase employing four focus group discussions and 30 in-depth interviews with PLHIV, peer educators, carers and health care providers (HCPs). Survey interviews were completed with 615 PLHIV in five rural and urban out-patient clinics in northern Vietnam using an Audio Computer Assisted Self-Interview (ACASI) and clinical records extraction. The survey instrument was carefully developed through a systematic procedure to ensure its reliability and validity. Cultural appropriateness was considered in the design and implementation of both the qualitative study and the cross sectional survey. The qualitative study uncovered several contrary perceptions between health care providers and HIV/AIDS patients regarding the true levels of ART adherence. Health care providers often stated that most of their patients closely adhered to their regimens, while PLHIV and their peers reported that “it is not easy” to do so. The quantitative survey findings supported the PLHIV and their peers’ point of view in the qualitative study, because non-adherence to ART was relatively common among the study sample. Using the ACASI technique, the estimated prevalence of onemonth non-adherence measured by the Visual Analogue Scale (VAS) was 24.9% and the prevalence of four-day not-on-time-adherence using the modified Adult AIDS Clinical Trials Group (AACTG) instrument was 29%. Observed agreement between the two measures was 84% and kappa coefficient was 0.60 (SE=0.04 and p<0.0001). The good agreement between the two measures in the current study is consistent with those found in previous research and provides evidence of cross-validation of the estimated adherence levels. The qualitative study was also valuable in suggesting important variables for the survey conceptual framework and instrument development. The survey confirmed significant correlations between two measures of ART adherence (i.e. dose adherence and time adherence) and many factors identified in the qualitative study, but failed to find evidence of significant correlations of some other factors and ART adherence. Non-adherence to ART was significantly associated with untreated depression, heavy alcohol use, illicit drug use, experiences with medication side-effects, chance health locus of control, low quality of information from HCPs, low satisfaction with received support and poor social connectedness. No multivariate association was observed between ART adherence and age, gender, education, duration of ART, the use of adherence aids, disclosure of ART, patients’ ability to initiate communication with HCPs or distance between clinic and patients’ residence. This is the largest study yet reported in Asia to examine non-adherence to ART and its possible determinants. The evidence strongly supports recent calls from other developing nations for HIV/AIDS services to provide screening, counseling and treatment for patients with depressive symptoms, heavy use of alcohol and substance use. Counseling should also address fatalistic beliefs about chance or luck determining health outcomes. The data suggest that adherence could be enhanced by regularly providing information on ART and assisting patients to maintain social connectedness with their family and the community. This study highlights the benefits of using a multi-method approach in examining complex barriers and facilitators of medication adherence. It also demonstrated the utility of the ACASI interview method to enhance open disclosure by people living with HIV/AIDS and thus, increase the veracity of self-reported data.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
We consider a continuous time model for election timing in a Majoritarian Parliamentary System where the government maintains a constitutional right to call an early election. Our model is based on the two-party-preferred data that measure the popularity of the government and the opposition over time. We describe the poll process by a Stochastic Differential Equation (SDE) and use a martingale approach to derive a Partial Differential Equation (PDE) for the government’s expected remaining life in office. A comparison is made between a three-year and a four-year maximum term and we also provide the exercise boundary for calling an election. Impacts on changes in parameters in the SDE, the probability of winning the election and maximum terms on the call exercise boundaries are discussed and analysed. An application of our model to the Australian Federal Election for House of Representatives is also given.
Resumo:
Purpose. To determine how Developmental Eye Movement (DEM) test results relate to reading eye movement patterns recorded with the Visagraph in visually normal children, and whether DEM results and recorded eye movement patterns relate to standardized reading achievement scores. Methods. Fifty-nine school-age children (age = 9.7 ± 0.6 years) completed the DEM test and had eye movements recorded with the Visagraph III test while reading for comprehension. Monocular visual acuity in each eye and random dot stereoacuity were measured and standardized scores on independently administered reading comprehension tests [reading progress test (RPT)] were obtained. Results. Children with slower DEM horizontal and vertical adjusted times tended to have slower reading rates with the Visagraph (r = -0.547 and -0.414 respectively). Although a significant correlation was also found between the DEM ratio and Visagraph reading rate (r = -0.368), the strength of the relationship was less than that between DEM horizontal adjusted time and reading rate. DEM outcome scores were not significantly associated with RPT scores. When the relative contribution of reading ability (RPT) and DEM scores was accounted for in multivariate analysis, DEM outcomes were not significantly associated with Visagraph reading rate. RPT scores were associated with Visagraph outcomes of duration of fixations (r = -0.403) and calculated reading rate (r = 0.366) but not with DEM outcomes. Conclusions.DEM outcomes can identify children whose Visagraph recorded eye movement patterns show slow reading rates. However, when reading ability is accounted for, DEM outcomes are a poor predictor of reading rate. Visagraph outcomes of duration of fixation and reading rate relate to standardized reading achievement scores; however, DEM results do not. Copyright © 2011 American Academy of Optometry.
Resumo:
Usability in HCI (Human-Computer Interaction) is normally understood as the simplicity and clarity with which the interaction with a computer program or a web site is designed. Identity management systems need to provide adequate usability and should have a simple and intuitive interface. The system should not only be designed to satisfy service provider requirements but it has to consider user requirements, otherwise it will lead to inconvenience and poor usability for users when managing their identities. With poor usability and a poor user interface with regard to security, it is highly likely that the system will have poor security. The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impacts their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on generating one-time passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this thesis, the security and usability aspects of contemporary methods for authentication based on one-time passwords (OTP) are examined and analyzed. In addition, more scalable solutions that provide a good user experience while at the same time preserving strong security are proposed.
Resumo:
We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.
Resumo:
Travel time is an important network performance measure and it quantifies congestion in a manner easily understood by all transport users. In urban networks, travel time estimation is challenging due to number of reasons such as, fluctuations in traffic flow due to traffic signals, significant flow to/from mid link sinks/sources, etc. The classical analytical procedure utilizes cumulative plots at upstream and downstream locations for estimating travel time between the two locations. In this paper, we discuss about the issues and challenges with classical analytical procedure such as its vulnerability to non conservation of flow between the two locations. The complexity with respect to exit movement specific travel time is discussed. Recently, we have developed a methodology utilising classical procedure to estimate average travel time and its statistic on urban links (Bhaskar, Chung et al. 2010). Where, detector, signal and probe vehicle data is fused. In this paper we extend the methodology for route travel time estimation and test its performance using simulation. The originality is defining cumulative plots for each exit turning movement utilising historical database which is self updated after each estimation. The performance is also compared with a method solely based on probe (Probe-only). The performance of the proposed methodology has been found insensitive to different route flow, with average accuracy of more than 94% given a probe per estimation interval which is more than 5% increment in accuracy with respect to Probe-only method.
Resumo:
Transmission smart grids will use a digital platform for the automation of high voltage substations. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. A time synchronisation system is required for a sampled value process bus, however the details are not defined in IEC 61850-9-2. PTPv2 provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. The suitability of PTPv2 to synchronise sampling in a digital process bus is evaluated, with preliminary results indicating that steady state performance of low cost clocks is an acceptable ±300 ns, but that corrections issued by grandmaster clocks can introduce significant transients. Extremely stable grandmaster oscillators are required to ensure any corrections are sufficiently small that time synchronising performance is not degraded.