384 resultados para Star properties


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress-strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young's modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former's Young's modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure-function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we constructed a new honeycomb by replacing the three-edge joint of the conventional regular hexagonal honeycomb with a hollow-cylindrical joint, and developed a corresponding theory to study its mechanical properties, i.e., Young's modulus, Poisson's ratio, fracture strength and stress intensity factor. Interestingly, with respect to the conventional regular hexagonal honeycomb, its Young's modulus and fracture strength are improved by 76% and 303%, respectively; whereas, for its stress intensity factor, two possibilities exist for the maximal improvements which are dependent of its relative density, and the two improvements are 366% for low-density case and 195% for high-density case, respectively. Moreover, a minimal Poisson's ratio exists. The present structure and theory could be used to design new honeycomb materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying the stiffness properties of soft tissues is essential for the diagnosis of many cardiovascular diseases such as atherosclerosis. In these pathologies it is widely agreed that the arterial wall stiffness is an indicator of vulnerability. The present paper focuses on the carotid artery and proposes a new inversion methodology for deriving the stiffness properties of the wall from cine-MRI (magnetic resonance imaging) data. We address this problem by setting-up a cost function defined as the distance between the modeled pixel signals and the measured ones. Minimizing this cost function yields the unknown stiffness properties of both the arterial wall and the surrounding tissues. The sensitivity of the identified properties to various sources of uncertainty is studied. Validation of the method is performed on a rubber phantom. The elastic modulus identified using the developed methodology lies within a mean error of 9.6%. It is then applied to two young healthy subjects as a proof of practical feasibility, with identified values of 625 kPa and 587 kPa for one of the carotid of each subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arterial mechanical property may be a potential variable for risk stratification. Large artery and central arterial compliance have been shown not only to correlate well with overall cardiovascular outcome in large epidemiological studies [1, 2] but also to correlate with coronary atherosclerotic burden as measured by conventional angiography [3]. Until recently, real-time B-mode ultrasound combined with simultaneous blood pressure measurements have been used to assess large artery compliance [4]. These techniques have an excellent temporal resolution but are unable to provide adequate spatial resolution to determine changes in vessel area as opposed to diameter and make the assumption that the vessel is perfectly round. Attempts to use MR imaging to measure large artery compliance have been published previously [5]. However, they have not utilised simultaneous blood pressure measurements during sequence acquisition. We report a technique using regular and simultaneous blood pressure measurement during 2 dimensional phase contrast magnetic resonance imaging 2DPC-MRI to determine local carotid compliance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eleven carotid atherothrombotic plaque samples were harvested from patients. Three samples that were highly calcified were discarded, while eight yielded results. The elastic properties of the material were estimated by fitting the measured indentation response to finite element simulations. The methodology was refined and its accuracy quantified using a synthetic rubber. The neo-Hookean form of the material model gave a good fit to the measured response of the tissue. The inferred shear modulus μ was found to be in the range 7-100 kPa, with a median value of 11 kPa. A review of published materials data showed a wide range of material properties for human atherothrombotic tissue. The effects of anisotropy and time dependency in these published results were highlighted. The present measurements were comparable to the static radial compression tests of Lee et al, 1991 [Structure-dependent dynamic behaviour of fibrous caps from human atherosclerotic plaques. Circulation 83, 1764-1770].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ample evidence supports that prostate tumor metastasis originates from a rare population of cancer cells, known as cancer stem cells (CSCs). Unfortunately, little is known about the identity of these cells, making it difficult to target the metastatic prostate tumor. Here, for the first time, we report the identification of a rare population of prostate cancer cells that express the Tie-2 protein. We found that this Tie-2High population exists mainly in prostate cancer cell lines that are capable of metastasizing to the bone. These cells not only express a higher level of CSC markers but also demonstrate enhanced resistance to the chemotherapeutic drug Cabazitaxel. In addition, knockdown of the expression of the Tie-2 ligand angiopoietin (Ang-1) led to suppression of CSC markers, suggesting that the Ang-1/Tie-2 signaling pathway functions as an autocrine loop for the maintenance of prostate CSCs. More importantly, we found that Tie-2High prostate cancer cells are more adhesive than the Tie-2Low population to both osteoblasts and endothelial cells. Moreover, only the Tie-2High, but not the Tie-2Low cells developed tumor metastasis in vivo when injected at a low number. Taken together, our data suggest that Tie-2 may play an important role during the development of prostate tumor metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale production of reliable carbon nanotubes (CNTs) based gas sensors involves the development of scalable and reliable processes for the fabrication of films with controlled morphology. Here, we report for the first time on highly scalable, ultrathin CNT films, to be employed as conductometric sensors for NO2 and NH3 detection at room temperature. The sensing films are produced by dip coating using dissolved CNTs in chlorosulfonic acid as a working solution. This surfactant-free approach does not require any post-treatment for the removal of dispersants or any CNTs functionalization, thus promising high quality CNTs for better sensitivity and low production costs. The effect of CNT film thickness and defect density on the gas sensing properties has been investigated. Detection limits of 1 ppm for NO2 and 7 ppm for NH3 have been achieved at room temperature. The experimental results reveal that defect density and film thickness can be controlled to optimize the sensing response. Gas desorption has been accelerated by continuous in-situ UV irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and optical properties of anatase titanium dioxide (TiO2), co-doped by nitrogen (N) and lithium (Li), have been investigated by density functional theory plus Hubbard correction term U, namely DFT+U. It is found that Li-dopants can effectively balance the net charges brought by N-dopants and shift the local state to the top of valence band. Depending on the distribution of dopants, the adsorption edges of TiO2 may be red- or blue-shifted, being consistent with recent experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of capacitors for electrical energy storage actually predates the invention of the battery. Alessandro Volta is attributed with the invention of the battery in 1800, where he first describes a battery as an assembly of plates of two different materials (such as copper and zinc) placed in an alternating stack and separated by paper soaked in brine or vinegar [1]. Accordingly, this device was referred to as Volta’s pile and formed the basis of subsequent revolutionary research and discoveries on the chemical origin of electricity. Before the advent of Volta’s pile, however, eighteenth century researchers relied on the use of Leyden jars as a source of electrical energy. Built in the mid-1700s at the University of Leyden in Holland, a Leyden jar is an early capacitor consisting of a glass jar coated inside and outside with a thin layer of silver foil [2, 3]. With the outer foil being grounded, the inner foil could be charged with an electrostatic generator, or a source of static electricity, and could produce a strong electrical discharge from a small and comparatively simple device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic plasma polymers are currently attracting significant interest for their potential in the areas of flexible optoelectronics and biotechnology. Thin films of plasma-polymerized polyterpenol fabricated under varied deposition conditions were studied using nanoindentation and nanoscratch analyses. Coatings fabricated at higher deposition power were characterized by improved hardness, from 0.33 GPa for 10 W to 0.51 GPa for 100 W at 500-μN load, and enhanced wear resistance. The elastic recovery was estimated to be between 0.1 and 0.14. Coatings deposited at higher RF powers also showed less mechanical deformation and improved quality of adhesion. The average (R a) and root mean square (R q) surface roughness parameters decreased, from 0.44 nm and 0.56 nm for 10 W to 0.33 nm and 0.42 nm for 100 W, respectively.