604 resultados para Speed control humps.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, two different high bandwidth converter control strategies are discussed. One of the strategies is for voltage control and the other is for current control. The converter, in each of the cases, is equipped with an output passive filter. For the voltage controller, the converter is equipped with an LC filter, while an output has an LCL filter for current controller. The important aspect that has been discussed the paper is to avoid computation of unnecessary references using high-pass filters in the feedback loop. The stability of the overall system, including the high-pass filters, has been analyzed. The choice of filter parameters is crucial for achieving desirable system performance. In this paper, the bandwidth of achievable performance is presented through frequency (Bode) plot of the system gains. It has been illustrated that the proposed controllers are capable of tracking fundamental frequency components along with low-order harmonic components. Extensive simulation results are presented to validate the control concepts presented in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the performance of two droop control schemes in a hybrid microgrid. With presence of both converter interfaced and inertial sources, the droop controller share power in a decentralized fashion. Both the droop controllers facilitate reactive power sharing based on voltage droop. However in frequency droop control, the real power sharing depends on the frequency, while in angle droop control, it depends on output voltage angle. For converter interfaced sources this reference voltage is tracked while for inertial DG, reference power for the prime mover is calculated from the reference angle with the proposed angle control scheme. This coordinated control scheme shows significant improvement in system performance. The comparison with the conventional frequency droop shows that the angle control scheme shares power with much lower frequency deviation. This is a significant improvement particularly in a frequent load changing scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to examine how a consumer’s weight control beliefs (WCB), a female advertising model’s body size (slim or large) and product type influence consumer evaluations and consumer body perceptions. The study uses an experiment of 371 consumers. The design of the experiment was a 2 (weight control belief: internal, external) X 2 (model size: larger sized, slim) X 2 (product type: weight controlling, non-weight controlling) between-participants factorial design. Results reveal two key contributions. First, larger sized models result in consumers feeling less pressure from society to be thin, viewing their actual shape as slimmer relative to viewing a slim model and wanting a thinner ideal body shape. Slim models result in the opposite effects. Second this research reveals a boundary condition for the extent to which endorser–product congruency theory can be generalized to endorsers of a larger body size. Results indicate that consumer WCB may be a useful variable to consider when marketers consider the use of larger models in advertising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspection aircraft equipped with cameras and other sensors are routinely used for asset location, inspection, monitoring and hazard identification of oil-gas pipelines, roads, bridges and power transmission grids. This paper is concerned with automated flight of fixed-wing inspection aircraft to track approximately linear infrastructure. We propose a guidance law approach that seeks to maintain aircraft trajectories with desirable position and orientation properties relative to the infrastructure under inspection. Furthermore, this paper also proposes the use of an adaptive maneuver selection approach, in which maneuver primitives are adaptively selected to improve the aircraft’s attitude behaviour. We employ an integrated design methodology particularly suited for an automated inspection aircraft. Simulation studies using full nonlinear semi-coupled six degree-of-freedom equations of motion are used to illustrate the effectiveness of the proposed guidance and adaptive maneuver selection approaches in realistic flight conditions. Experimental flight test results are given to demonstrate the performance of the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is more that 20 years since the “Social Control of the Drink Driver” edited by Laurence, Snortum and Zimring (1988) were published. It was, and remains a major examination of the issue involving 17 scientists from all relevant disciplines and policy centres and represents the current practice and experience at the time. While much of, but by no means all, the content is centred on the North American experience the scholarship and range of research data explored through the investigative lens of lawyers, pharmacologists, psychologists, sociologists, criminologists and economists covers all the major issues being examined in Europe, and Australia at the time. More importantly, it presents the policy aspirations and goals of nine countries and includes a comparison of deterrence and the legal context in six countries; emerging technologies for control and the potential contributions of education and rehabilitation. The experience of promoting evidence based policies and practices are generally experienced in all countries as both laborious and painfully slow. However, this ICADTS meeting in Norway provides an opportunity to challenge these feelings by re-examining the current situation compared with that documented over 20yrs ago. This presentation will undertake a reality check on just what we have achieved within that time and try to attribute success and failure towards recommendations for our future endeavours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An autonomous underwater vehicle (AUV) is expected to operate in an ocean in the presence of poorly known disturbance forces and moments. The uncertainties of the environment makes it difficult to apply open-loop control scheme for the motion planning of the vehicle. The objective of this paper is to develop a robust feedback trajectory tracking control scheme for an AUV that can track a prescribed trajectory amidst such disturbances. We solve a general problem of feedback trajectory tracking of an AUV in SE(3). The feedback control scheme is derived using Lyapunov-type analysis. The results obtained from numerical simulations confirm the asymptotic tracking properties of the feedback control law. We apply the feedback control scheme to different mission scenarios, with the disturbances being initial errors in the state of the AUV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.