362 resultados para Recognition accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutional recognition campaign has received party-wide support and its efforts have been promoted by Prime Minister Tony Abbott as being something that would ‘complete our Constitution.’ The broader rhetoric surrounding this campaign suggests that it will result in a just, albeit delayed, recognition of indigenous peoples in the Australian legal system. However, beneath the surface of this seemingly benevolent gesture, is a reaffirmation of the colonial subordination and erasure of the several hundred original nations’ peoples and ways of being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – Preliminary cost estimates for construction projects are often the basis of financial feasibility and budgeting decisions in the early stages of planning and for effective project control, monitoring and execution. The purpose of this paper is to identify and better understand the cost drivers and factors that contribute to the accuracy of estimates in residential construction projects from the developers’ perspective. Design/methodology/approach – The paper uses a literature review to determine the drivers that affect the accuracy of developers’ early stage cost estimates and the factors influencing the construction costs of residential construction projects. It used cost variance data and other supporting documentation collected from two case study projects in South East Queensland, Australia, along with semi-structured interviews conducted with the practitioners involved. Findings – It is found that many cost drivers or factors of cost uncertainty identified in the literature for large-scale projects are not as apparent and relevant for developers’ small-scale residential construction projects. Specifically, the certainty and completeness of project-specific information, suitability of historical cost data, contingency allowances, methods of estimating and the estimator’s level of experience significantly affect the accuracy of cost estimates. Developers of small-scale residential projects use pre-established and suitably priced bills of quantities as the prime estimating method, which is considered to be the most efficient and accurate method for standard house designs. However, this method needs to be backed with the expertise and experience of the estimator. Originality/value – There is a lack of research on the accuracy of developers’ early stage cost estimates and the relevance and applicability of cost drivers and factors in the residential construction projects. This research has practical significance for improving the accuracy of such preliminary cost estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Article analyzes the recognition and enforcement of cross-border insolvency judgments from the United States, United Kingdom, and Australia to determine whether the UNCITRAL Model Law’s goal of modified universalism is currently being practiced, and subjects the Model Law to analysis through the lens of international relations theories to elaborate a way forward. We posit that courts could use the express language of the Model Law text to confer recognition and enforcement of foreign insolvency judgments. The adoption of our proposal will reduce costs, maximize recovery for creditors, and ensure predictability for all parties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To develop and test decision tree (DT) models to classify physical activity (PA) intensity from accelerometer output and Gross Motor Function Classification System (GMFCS) classification level in ambulatory youth with cerebral palsy (CP); and 2) compare the classification accuracy of the new DT models to that achieved by previously published cut-points for youth with CP. METHODS Youth with CP (GMFCS Levels I - III) (N=51) completed seven activity trials with increasing PA intensity while wearing a portable metabolic system and ActiGraph GT3X accelerometers. DT models were used to identify vertical axis (VA) and vector magnitude (VM) count thresholds corresponding to sedentary (SED) (<1.5 METs), light PA (LPA) (>/=1.5 and <3 METs) and moderate-to-vigorous PA (MVPA) (>/=3 METs). Models were trained and cross-validated using the 'rpart' and 'caret' packages within R. RESULTS For the VA (VA_DT) and VM decision trees (VM_DT), a single threshold differentiated LPA from SED, while the threshold for differentiating MVPA from LPA decreased as the level of impairment increased. The average cross-validation accuracy for the VC_DT was 81.1%, 76.7%, and 82.9% for GMFCS levels I, II, and III, respectively. The corresponding cross-validation accuracy for the VM_DT was 80.5%, 75.6%, and 84.2%, respectively. Within each GMFCS level, the decision tree models achieved better PA intensity recognition than previously published cut-points. The accuracy differential was greatest among GMFCS level III participants, in whom the previously published cut-points misclassified 40% of the MVPA activity trials. CONCLUSION GMFCS-specific cut-points provide more accurate assessments of MVPA levels in youth with CP across the full spectrum of ambulatory ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the results of an exploratory study that examined the problem of automating content analysis of student online discussion transcripts. We looked at the problem of coding discussion transcripts for the levels of cognitive presence, one of the three main constructs in the Community of Inquiry (CoI) model of distance education. Using Coh-Metrix and LIWC features, together with a set of custom features developed to capture discussion context, we developed a random forest classification system that achieved 70.3% classification accuracy and 0.63 Cohen's kappa, which is significantly higher than values reported in the previous studies. Besides improvement in classification accuracy, the developed system is also less sensitive to overfitting as it uses only 205 classification features, which is around 100 times less features than in similar systems based on bag-of-words features. We also provide an overview of the classification features most indicative of the different phases of cognitive presence that gives an additional insights into the nature of cognitive presence learning cycle. Overall, our results show great potential of the proposed approach, with an added benefit of providing further characterization of the cognitive presence coding scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an effective classification method based on Support Vector Machines (SVM) in the context of activity recognition. Local features that capture both spatial and temporal information in activity videos have made significant progress recently. Efficient and effective features, feature representation and classification plays a crucial role in activity recognition. For classification, SVMs are popularly used because of their simplicity and efficiency; however the common multi-class SVM approaches applied suffer from limitations including having easily confused classes and been computationally inefficient. We propose using a binary tree SVM to address the shortcomings of multi-class SVMs in activity recognition. We proposed constructing a binary tree using Gaussian Mixture Models (GMM), where activities are repeatedly allocated to subnodes until every new created node contains only one activity. Then, for each internal node a separate SVM is learned to classify activities, which significantly reduces the training time and increases the speed of testing compared to popular the `one-against-the-rest' multi-class SVM classifier. Experiments carried out on the challenging and complex Hollywood dataset demonstrates comparable performance over the baseline bag-of-features method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We aimed to assess the impact of task demands and individual characteristics on threat detection in baggage screeners. Background: Airport security staff work under time constraints to ensure optimal threat detection. Understanding the impact of individual characteristics and task demands on performance is vital to ensure accurate threat detection. Method: We examined threat detection in baggage screeners as a function of event rate (i.e., number of bags per minute) and time on task across 4 months. We measured performance in terms of the accuracy of detection of Fictitious Threat Items (FTIs) randomly superimposed on X-ray images of real passenger bags. Results: Analyses of the percentage of correct FTI identifications (hits) show that longer shifts with high baggage throughput result in worse threat detection. Importantly, these significant performance decrements emerge within the first 10 min of these busy screening shifts only. Conclusion: Longer shift lengths, especially when combined with high baggage throughput, increase the likelihood that threats go undetected. Application: Shorter shift rotations, although perhaps difficult to implement during busy screening periods, would ensure more consistently high vigilance in baggage screeners and, therefore, optimal threat detection and passenger safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To examine the effects of gaze position and optical blur, similar to that used in multifocal corrections, on stepping accuracy for a precision stepping task among older adults. Methods: Nineteen healthy older adults (mean age, 71.6 +/- 8.8 years) with normal vision performed a series of precision stepping tasks onto a fixed target. The stepping tasks were performed using a repeated-measures design for three gaze positions (fixating on the stepping target as well as 30 and 60 cm farther forward of the stepping target) and two visual conditions (best-corrected vision and with +2.50DS blur). Participants' gaze position was tracked using a head-mounted eye tracker. Absolute, anteroposterior, and mediolateral foot placement errors and within-subject foot placement variability were calculated from the locations of foot and floor-mounted retroreflective markers captured by flash photography of the final foot position. Results: Participants made significantly larger absolute and anteroposterior foot placement errors and exhibited greater foot placement variability when their gaze was directed farther forward of the stepping target. Blur led to significantly increased absolute and anteroposterior foot placement errors and increased foot placement variability. Furthermore, blur differentially increased the absolute and anteroposterior foot placement errors and variability when gaze was directed 60 cm farther forward of the stepping target. Conclusions: Increasing gaze position farther ahead from stepping locations and the presence of blur negatively impact the stepping accuracy of older adults. These findings indicate that blur, similar to that used in multifocal corrections, has the potential to increase the risk of trips and falls among older populations when negotiating challenging environments where precision stepping is required, particularly as gaze is directed farther ahead from stepping locations when walking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal physiological processes can alter the weight of an infant by ± 80 g a day. Variations in measured weight and in measured changes in weight cannot be reduced by better scales or better techniques.