376 resultados para Hopfield network
Resumo:
The rights of individuals to self-determination and participation in social, political and economic life are recognised and supported by Articles 1, 3 and 25 of the International Covenant on Civil and Political Rights 1966.4 Article 1 of the United Nations’ Human Rights Council’s Resolution on the Promotion and Protection of Human Rights on the Internet of July 2012 confirms individuals have the same rights online as offline. Access to the internet is essential and as such the UN: Calls upon all States to promote and facilitate access to the Internet and international cooperation aimed at the development of media and information and communications facilities in all countries (Article 3) Accordingly, access to the internet per se is a fundamental human right, which requires direct State recognition and support.5 The obligations of the State to ensure its citizens are able, and are enabled, to access the internet, are not matters that should be delegated to commercial parties. Quite simply – access to the internet, and high-speed broadband, by whatever means are “essential services” and therefore “should be treated as any other utility service”...
Resumo:
In this paper, a new high precision focused word sense disambiguation (WSD) approach is proposed, which not only attempts to identify the proper sense for a word but also provides the probabilistic evaluation for the identification confidence at the same time. A novel Instance Knowledge Network (IKN) is built to generate and maintain semantic knowledge at the word, type synonym set and instance levels. Related algorithms based on graph matching are developed to train IKN with probabilistic knowledge and to use IKN for probabilistic word sense disambiguation. Based on the Senseval-3 all-words task, we run extensive experiments to show the performance enhancements in different precision ranges and the rationality of probabilistic based automatic confidence evaluation of disambiguation. We combine our WSD algorithm with five best WSD algorithms in senseval-3 all words tasks. The results show that the combined algorithms all outperform the corresponding algorithms.
Resumo:
This research improved the measurement of public transport accessibility by capturing; travellers' behaviour; diversity of public transport mode; and the subjectivity of travellers' decision in the complex transport networks. The results of this research not only highlighted the importance of considering public transport network characteristics but also, revealed the impact of public transport diversity in the modelling of public transport accessibility. The research developed a hybrid discrete choice model with a nested logit structure to treat the correlation among the public transport mode choices and, a logit correction factor to rectify the correlation among the stop choices.
Resumo:
Trimesic acid (TMA) and alcohols were recently shown to self-assemble into a stable, two-component linear pattern at the solution/highly oriented pyrolytic graphite (HOPG) interface. Away from equilibrium, the TMA/alcohol self-assembled molecular network (SAMN) can coexist with pure-TMA networks. Here, we report on some novel characteristics of these non-equilibrium TMA structures, investigated by scanning tunneling microscopy (STM). We observe that both the chicken-wire and flower-structure TMA phases can host 'guest' C60 molecules within their pores, whereas the TMA/alcohol SAMN does not offer any stable adsorption sites for the C60 molecules. The presence of the C60 molecules at the solution/solid interface was found to improve the STM image quality. We have taken advantage of the high-quality imaging conditions to observe unusual TMA bonding geometries at domain boundaries in the TMA/alcohol SAMN. Boundaries between aligned TMA/alcohol domains can give rise to doubled TMA dimer rows in two different configurations, as well as a tripled-TMA row. The boundaries created between non-aligned domains can create geometries that stabilize TMA bonding configurations not observed on surfaces without TMA/alcohol SAMNs, including small regions of the previously predicted 'super flower' TMA bonding geometry and a tertiary structure related to the known TMA phases. These structures are identified as part of a homologic class of TMA bonding motifs, and we explore some of the reasons for the stabilization of these phases in our multicomponent system.
Resumo:
Access to energy is a fundamental component of poverty abatement. People who live in homes without electricity are often dependent on dirty, time-consuming and disproportionately expensive solid fuel sources for heating and cooking. [1] In developing countries, the Human Development Index (HDI), which comprises measures of standard of living, longevity and educational attainment, increases rapidly with per capita electricity use. [2] For these reasons the United Nations has been making a concerted effort to promote global access to energy, first by naming 2012 the Year of Sustainable Energy for All, [3] and now by declaring 2014-2024 the Decade of Sustainable Energy for All. [4]
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
Queensland University of Technology (QUT), School of Nursing (SoN), has offered a postgraduate Graduate Certificate in Emergency Nursing since 2003, for registered nurses practising in an emergency clinical area, who fulfil key entry criteria. Feedback from industry partners and students evidenced support for flexible and extended study pathways in emergency nursing. Therefore, in the context of a growing demand for emergency health services and the need for specialist qualified staff, it was timely to review and redevelop our emergency specialist nursing courses. The QUT postgraduate emergency nursing study area is supported by a course advisory group, whose aim is to provide input and focus development of current and future course planning. All members of the course advisory were invited to form an expert panel to review current emergency course documents. A half day “brainstorm session”, planning and development workshop was held to review the emergency courses to implement changes from 2009. Results from the expert panel planning day include: proposal for a new emergency specialty unit; incorporation of the College of Emergency Nurses (CENA) Standards for Emergency Nursing Specialist in clinical assessment; modification of the present core emergency unit; enhancing the focus of the two other units that emergency students undertake; and opening the emergency study area to the Graduate Diploma in Nursing (Emergency Nursing) and Master of Nursing (Emergency Nursing). The conclusion of the brainstorm session resulted in a clearer conceptualisation, of the study pathway for students. Overall, the expert panel group of enthusiastic emergency educators and clinicians provided viable options for extending the career progression opportunities for emergency nurses. In concluding, the opportunity for collaboration across university and clinical settings has resulted in the design of a course with exciting potential and strong clinical relevance.
Resumo:
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Resumo:
Replacement of deteriorated water pipes is a capital-intensive activity for utility companies. Replacement planning aims to minimize total costs while maintaining a satisfactory level of service and is usually conducted for individual pipes. Scheduling replacement in groups is seen to be a better method and has the potential to provide benefits such as the reduction of maintenance costs and service interruptions. However, developing group replacement schedules is a complex task and often beyond the ability of a human expert, especially when multiple or conflicting objectives need to be catered for, such as minimization of total costs and service interruptions. This paper describes the development of a novel replacement decision optimization model for group scheduling (RDOM-GS), which enables multiple group-scheduling criteria by integrating new cost functions, a service interruption model, and optimization algorithms into a unified procedure. An industry case study demonstrates that RDOM-GS can improve replacement planning significantly and reduce costs and service interruptions.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
This project has investigated how the architecture of the blood vessels supplying nutrients to skeletal muscles is affected by muscle contusion injuries, and how it changes during healing with or without initial treatment of the injury by icing. In order to do this, we used contrast agents to visualise blood vessels in 3D with micro-computed tomography imaging. This research significantly contributes to the fields of orthopaedics, traumatology and sports medicine, as it improves our understanding of muscle contusion injuries. Furthermore, the methods developed in this thesis may help to improve the diagnosis and monitoring of these injuries.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.
Resumo:
WinBUGS code and data to reproduce our network meta-analysis from "Control strategies to prevent total hip replacement-related infections: a systematic review and mixed treatment comparison" published in BMJ Open.