602 resultados para Environmental adaptation
Resumo:
The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.
Resumo:
Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.
Resumo:
Adaptation to climate change is an imperative and an institutional challenge. This paper argues that the operationalisation of climate adaptation is a crucial element of a comprehensive response to the impacts of climate change on human settlements, including major cities and metropolitan areas. In this instance, the operationalisation of climate adaptation refers to climate adaptation becoming institutionally codified and implemented through planning policies and objectives, making it a central tenet of planning governance. This paper has three key purposes. First, it develops conceptual understandings of climate adaptation as an institutional challenge. Second, it identifies the intersection of this problem with planning and examines how planning regimes, as institutions, can better manage stress created by climate change impacts in human settlements. Third, it reports empirical findings focused on how the metro-regional planning regime in Southeast Queensland (SEQ), Australia, has institutionally responded to the challenge of operationalising climate adaptation. Drawing on key social scientific theories of institutionalism, it is argued that the success or failure of the SEQ planning regime's response to the imperative of climate adaptation is contingent on its ability to undergo institutional change. It is further argued that a capacity for institutional change is heavily conditioned by the influence of internal and external pathways and barriers to change, which facilitate or hinder change processes. The paper concludes that the SEQ metro-regional planning regime has undergone some institutional change but has not yet undergone change sufficient to fully operationalise climate adaptation as a central tenet of planning governance in the region.
Resumo:
Limited research has been conducted with at-risk populations in examining perceived environmental correlates of physical activity (PA); thus, we examined this relationship among parents with young children, a group at risk for physical inactivity. Parents (252 mothers, 206 fathers) completed a questionnaire assessing measures of perceived neighborhood environment and a 1-week follow-up of PA behavior. Mothers were more likely than fathers to perceive their neighborhood as unsafe to go for walks at night and less likely to perceive transit stops within 10–15 minutes walking distance, sidewalks on most streets, and facilities to bicycle. Adjusting for demographics, shops within easy walking distance, sidewalks on most streets, and having no more than one motor vehicle were associated with being active for both sexes. Access to transit stops and free/low cost recreational facilities were also associated with mothers’ PA. These findings suggest that environmental factors may support parents being active at recommended levels.
Resumo:
This paper understands climate change as a transformative stressor that will prompt responses from institutional governance frameworks in Australian cities. A transformative stressor is characterised as a chronic large-scale phenomenon which triggers a process of institutional change whereby institutions seek to reorientate their activities to better manage the social, economic and environmental impacts created by the transformative dynamic. It is posited that institutional change will be required as Australian metropolitan institutional governance frameworks seek to manage climate change effects in urban environments. It is argued that improved operationalisation of adaptation is required as part of a comprehensive urban response to the transformative stresses climate change and its effects are predicted to create in Australian cities. The operationalisation of adaptation refers to adaptation becoming incorporated, codified and implemented as a central principle of metro-regional planning governance. This paper has three key purposes. First, it examines theoretical and conceptual understandings of the role of transformative stressors in compelling institutional change within urban settings. Second, it establishes a conceptual approach that understands climate change as a transformative stressor requiring institutional change within the metropolitan planning frameworks of Australia's cities. Third, it offers early results and conclusions from an empirical investigation into the current prospects for operationalisation of climate adaptation in planning programs within Southeast Queensland (SEQ) via changes to institutional governance. A significant emerging conclusion is that early climate stresses appear not to be leading to episodic institutional change in the metropolitan planning frameworks of SEQ.
Operationalising climate adaptation through institutional change : conceptual and empirical insights
Resumo:
Adaptation is increasingly understood as a necessary response in respect of climate change impacts on urban settlements. Australia is heavily urbanised and climate change is likely to impact severely on its urban environments. Accordingly, climate adaptation must become a key component of urban management. This paper is part of a wider project and reports early insights into the problem of how adaptation may be institutionally operationalised within a planning regime. In this instance, the operationalisation of adaptation refers to adaptation becoming incorporated, codified and implemented as a central principle of planning governance. This paper has three key purposes: first, to set out a conceptual approach to climate adaptation as an institutional challenge; second, to identify the intersection of this problem with planning; third, to report on an on-going empirical investigation in Southeast Queensland (SEQ). Informed by key social scientific theories of institutionalism, this paper develops a conceptual framework that understands the metro-regional planning system of SEQ as an institutional regime capable of undergoing a process of change to respond to the adaptation imperative. It is posited that the success or failure of the SEQ regime’s response to the adaptation imperative is contingent on its ability to undergo institutional change. A capacity for change in this regard is understood to be subject to the influence of various internal and external barriers and pathways that promote or hinder processes of institutional change. Specific attention is paid to the role of ‘storylines’ in facilitating or blocking institutional change.
Resumo:
Adaptation is increasingly being viewed as a necessary response tool in respect of climate change effects. Though the subject of significant scholarly and professional attention, adaptation still continues to lag behind mitigation in the climate change discourse. However, this situation looks likely to change over the coming years due to a increasing scientific acceptance that certain climate change effects are now inevitable. The purpose of this research is to illustrate, consider and demonstrate how urban planning regimes can use some of their professional tools to develop adaptation strategies and interventions in urban systems. These tools include plan-making, development management, urban design and place-making. Urban systems contribute disproportionately to climate change and will also likely suffer considerably from the resulting effects. Moreover, the majority of the world’s population is now urbanised, suggesting that adaptation will be crucial in order to develop urban systems that are resilient to climate change effects. Informed by a reflexive, qualitative methodology, this paper offers an informed understanding and illustration of adaptation as a climate change response, its use in urban systems and some of the roles and strategies that planning may take in developing and implementing urban adaptation. It concludes that urban planning regimes can have key roles in adapting urban systems to numerous climate change effects.
Resumo:
Instances of parallel ecotypic divergence where adaptation to similar conditions repeatedly cause similar phenotypic changes in closely related organisms are useful for studying the role of ecological selection in speciation. Here we used a combination of traditional and next generation genotyping techniques to test for the parallel divergence of plants from the Senecio lautus complex, a phenotypically variable groundsel that has adapted to disparate environments in the South Pacific. Phylogenetic analysis of a broad selection of Senecio species showed that members of the S. lautus complex form a distinct lineage that has diversified recently in Australasia. An inspection of thousands of polymorphisms in the genome of 27 natural populations from the S. lautus complex in Australia revealed a signal of strong genetic structure independent of habitat and phenotype. Additionally, genetic differentiation between populations was correlated with the geographical distance separating them, and the genetic diversity of populations strongly depended on geographical location. Importantly, coastal forms appeared in several independent phylogenetic clades, a pattern that is consistent with the parallel evolution of these forms. Analyses of the patterns of genomic differentiation between populations further revealed that adjacent populations displayed greater genomic heterogeneity than allopatric populations and are differentiated according to variation in soil composition. These results are consistent with a process of parallel ecotypic divergence in face of gene flow.
Resumo:
Invasive species provide excellent study systems to evaluate the ecological and evolutionary processes that contribute to the colonization of novel environments. While the ecological processes that contribute to the successful establishment of invasive plants have been studied in detail, investigation of the evolutionary processes involved in successful invasions has only recently received attention. In particular, studies investigating the genomic and gene expression differences between native and introduced populations of invasive species are just beginning and are required if we are to understand how plants become invasive. In the current issue of Molecular Ecology, Hodgins et al. () tackle this unresolved question, by examining gene expression differences between native and introduced populations of annual ragweed, Ambrosia artemisiifolia. The study identifies a number of potential candidate genes based on gene expression differences that may be responsible for the success of annual ragweed in its introduced range. Furthermore, genes involved in stress response are over-represented in the differentially expressed gene set. Future experiments could use functional studies to test whether changes in gene expression at these candidate genes do in fact underlie changes in growth characteristics and reproductive output observed in this and other invasive species.
Resumo:
In recent events, notions of political protest, civil disobedience, extremism, and criminal action have become increasingly blurred. The London Riots, the Occupy movement, and the actions of hacking group Anonymous have all sparked heated debate about the limits of legitimate protest, and the distinction between an acceptable action and a criminal offence. Long before these events, environmental activists were challenging convention in protest actions, with several groups engaging in politically motivated law-breaking. The emergence of the term ‘eco-tage’ (the sabotage of equipment in order to protect the environment) signifies the important place environmental activists hold in challenging the traditional boundaries between illegal action and legitimate protest. Many of these groups establish their own boundaries of legitimacy, with some justifying their actions on the basis of civil disobedience or extensional self-defence. This paper examines the statements of environmental activist organisations that have engaged in politically motivated law breaking. It identifies the parameters that these groups set on their illegal actions, as well as the justifications that they provide, with a view to determining where these actions fit in the vast grey area between legal protest and violent extremism.
Resumo:
This paper examines ‘green’ entrepreneurial nascent and young firms in Australia. Findings of interest in this paper include: • Green entrepreneurs are more likely to be highly educated and have an extended depth of experience within their industry and are more likely to have started a business prior to their current venture. • Green entrepreneurs exhibit increased levels of innovation, with an increased focus on new & high technology, R&D and the development of proprietary technology. • Green entrepreneurs are most likely to be based upon a product rather than a service and have a higher emphasis upon growth when compared with non-green entrepreneurs. • Green entrepreneurial firms tend to have a longer venture creation process and draw financial resources from a larger number of sources and rely more upon equity as a means of financing their venture.
Resumo:
Rural communities across Australia are increasingly being asked to shoulder the environmental and social impacts of intensive mining and gas projects. Escalating demand for coal seam gas (CSG) is raising significant environmental justice issues for rural communities. Chief amongst environmental concerns are risks of contamination or depletion of vital underground aquifers as well as treatment and disposal of high-saline water close to high quality agricultural soils. Associated infrastructure such as pipelines, electricity lines, gas processing and port facilities can also adversely affect communities and ecosystems great distances from where the gas is originally extracted. Whilst community submission (and appeal) rights do exist, accessing expert independent information is challenging, legal terminology is complex and submission periods are short, leading ultimately to a lack of procedural justice for landholders and their communities. Since August 2012, Queensland University of Technology (QUT) has worked in partnership with not-for-profit legal centre - Queensland’s Environmental Defenders Office (EDO) - to help better educate communities about mining and CSG assessment processes. The project, now entering its third semester, aims to empower communities to access relevant information and actively engage in legal processes on their own behalf. Students involved in the project so far have helped to research chapters of a comprehensive community guide to mining and CSG law as well as organising multidisciplinary community forums and preparing information on land access and compensation rights for landholders. While environmental justice issues still exist without significant law reform, the project has led to greater awareness amongst the community of the laws relating the CSG. At the same time, it has led to a greater understanding by students and academics of real life environmental justice issues currently faced by rural communities.
Resumo:
Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data. Read More: http://www.esajournals.org/doi/abs/10.1890/12-2088.1
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
A novel method was developed for studying the genetic relatedness of Pseudomonas aeruginosa isolates from clinical and environmental sources. This bacterium is ubiquitous in the natural environment and is an important pathogen known to infect Cystic Fibrosis (CF) patients. The transmission route of strains has not yet been defined; current theories include acquisition from an environmental source or through patient-to-patient spread. A highly discriminatory, bioinformatics based, DNA typing method was developed to investigate the relatedness of clinical and environmental isolates. This study found a similarity between the environmental and several CF clonal strains and also highlighted occurrence of environmental P. aeruginosa strains in CF infections.