385 resultados para Electrical engineering|Artificial intelligence
Resumo:
Social Engineering (ES) is now considered the great security threat to people and organizations. Ever since the existence of human beings, fraudulent and deceptive people have used social engineering tricks and tactics to trick victims into obeying them. There are a number of social engineering techniques that are used in information technology to compromise security defences and attack people or organizations such as phishing, identity theft, spamming, impersonation, and spaying. Recently, researchers have suggested that social networking sites (SNSs) are the most common source and best breeding grounds for exploiting the vulnerabilities of people and launching a variety of social engineering based attacks. However, the literature shows a lack of information about what types of social engineering threats exist on SNSs. This study is part of a project that attempts to predict a persons’ vulnerability to SE based on demographic factors. In this paper, we demonstrate the different types of social engineering based attacks that exist on SNSs, the purposes of these attacks, reasons why people fell (or did not fall) for these attacks, based on users’ opinions. A qualitative questionnaire-based survey was conducted to collect and analyse people’s experiences with social engineering tricks, deceptions, or attacks on SNSs.
Resumo:
Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as “social engineering.” Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users’ susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.
Resumo:
Inductive fault current limiters (FCLs) have several advantages, such as significant current limitation, immediate triggering and relatively low losses. Despite these advantages, saturated core FCLs have not been commercialized due to its large size and associated high costs. A major remaining challenge is to reduce the footprint of the device. In this paper, a solution to reduce the overall footprint is proposed and discussed. In arrangements of windings on a core in reactors such as FCLs, the core is conventionally grounded. The electrical insulation distance between high voltage winding and core can be reduced if the core is left at floating potential. This paper shows the results of the investigation carried out on the insulation of such a coil-core assembly. Two experiments were conducted. In the first, the behavior of the apparatus under high voltage conditions was assessed by performing power frequency and lightning impulse tests. In the second experiment, a low voltage test was conducted during which voltages of different frequencies and pulses with varying rise times were applied. A finite element simulation was also carried out for comparison and further investigation
Resumo:
The paper examines the knowledge of pedestrian movements, both in real scenarios, and from more recent years, in the virtual 4 simulation realm. Aiming to verify whether it is possible to learn from the study of virtual environments how people will behave in real 5 environments, it is vital to understand what is already known about behavior in real environments. Besides the walking interaction among 6 pedestrians, the interaction between pedestrians and the built environment in which they are walking also have greatest relevance. Force-based 7 models were compared with the other three major microscopic models of pedestrian simulation to demonstrate a more realistic and capable 8 heuristic approach is needed for the study of the dynamics of pedestrians.
Resumo:
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.
Resumo:
In this paper, we demonstrate that the distribution of Wolfram classes within a cellular automata rule space in the triangular tessellation is not consistent across different topological general. Using a statistical mechanics approach, cellular automata dynamical classes were approximated for cellular automata defined on genus-0, genus-1 and genus-2 2-manifolds. A distribution-free equality test for empirical distributions was applied to identify cases in which Wolfram classes were distributed differently across topologies. This result implies that global structure and local dynamics contribute to the long term evolution of cellular automata.
Resumo:
Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.
Resumo:
Heterogeneous health data is a critical issue when managing health information for quality decision making processes. In this paper we examine the efficient aggregation of lifestyle information through a data warehousing architecture lens. We present a proof of concept for a clinical data warehouse architecture that enables evidence based decision making processes by integrating and organising disparate data silos in support of healthcare services improvement paradigms.
Resumo:
Unified Communication (UC) is the integration of two or more real time communication systems into one platform. Integrating core communication systems into one overall enterprise level system delivers more than just cost saving. These real-time interactive communication services and applications over Internet Protocol (IP) have become critical in boosting employee accessibility and efficiency, improving customer support and fostering business agility. However, some small and medium-sized businesses (SMBs) are far from implementing this solution due to the high cost of initial deployment and ongoing support. In this paper, we will discuss and demonstrate an open source UC solution, viz. “Asterisk” for use by SMBs, and report on some performance tests using SIPp. The contribution from this research is the provision of technical advice to SMBs in deploying UC, which is manageable in terms of cost, ease of deployment and support.
Resumo:
This thesis is a study on controlling methods for six-legged robots. The study is based on mathematical modeling and simulation. A new joint controller is proposed and tested in simulation that uses joint angles and leg reaction force as inputs to generate a torque, and a method to optimise this controller is formulated and validated. Simulation shows that hexapod can walk on flat ground based on PID controllers with just four target configurations and a set of leg coordination rules, which provided the basis for the design of the new controller.
Resumo:
Cloud Computing, based on early virtual computer concepts and technologies, is now itself a maturing technology in the marketplace and it has revolutionized the IT industry, being the powerful platform that many businesses are choosing to migrate their in-premises IT services onto. Cloud solution has the potential to reduce the capital and operational expenses associated with deploying IT services on their own. In this study, we have implemented our own private cloud solution, infrastructure as a service (IaaS), using the OpenStack platform with high availability and a dynamic resource allocation mechanism. Besides, we have hosted unified communication as a service (UCaaS) in the underlying IaaS and successfully tested voice over IP (VoIP), video conferencing, voice mail and instant messaging (IM) with clients located at the remote site. The proposed solution has been developed in order to give advice to bussinesses that want to build their own cloud environment, IaaS and host cloud services and applicatons in the cloud. This paper also aims at providing an alternate option for proprietary cloud solutions for service providers to consider.
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
With the overwhelming increase in the amount of data on the web and data bases, many text mining techniques have been proposed for mining useful patterns in text documents. Extracting closed sequential patterns using the Pattern Taxonomy Model (PTM) is one of the pruning methods to remove noisy, inconsistent, and redundant patterns. However, PTM model treats each extracted pattern as whole without considering included terms, which could affect the quality of extracted patterns. This paper propose an innovative and effective method that extends the random set to accurately weigh patterns based on their distribution in the documents and their terms distribution in patterns. Then, the proposed approach will find the specific closed sequential patterns (SCSP) based on the new calculated weight. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms other state-of-the-art methods in different popular measures.
Resumo:
Semantic Web offers many possibilities for future Web technologies. Therefore, it is a need to search for ways that can bring the huge amount of unstructured documents from current Web to Semantic Web automatically. One big challenge in searching for such ways is how to understand patterns by both humans and machine. To address this issue, we present an innovative model which interprets patterns to high level concepts. These concepts can explain the patterns' meanings in a human understandable way while improving the information filtering performance. The model is evaluated by comparing it against one state-of-the-art benchmark model using standard Reuters dataset. The results show that the proposed model is successful. The significance of this model is three fold. It gives a way to interpret text mining output, provides a technique to find concepts relevant to the whole set of patterns which is an essential feature to understand the topic, and to some extent overcomes information mismatch and overload problems of existing models. This model will be very useful for knowledge based applications.