551 resultados para Effective Temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. METHODS/PRINCIPAL FINDINGS We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. CONCLUSIONS/SIGNIFICANCE We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between temperature and mortality is generally found to be bathtub shaped (rising at both extremes). However, there are limited data on the potential health effects of temperature variability and on temperature itself...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy auditing is an effective but costly approach for reducing the long-term energy consumption of buildings. When well-executed, energy loss can be quickly identified in the building structure and its subsystems. This then presents opportunities for improving energy efficiency. We present a low-cost, portable technology called "HeatWave" which allows non-experts to generate detailed 3D surface temperature models for energy auditing. This handheld 3D thermography system consists of two commercially available imaging sensors and a set of software algorithms which can be run on a laptop. The 3D model can be visualized in real-time by the operator so that they can monitor their degree of coverage as the sensors are used to capture data. In addition, results can be analyzed offline using the proposed "Spectra" multispectral visualization toolbox. The presence of surface temperature data in the generated 3D model enables the operator to easily identify and measure thermal irregularities such as thermal bridges, insulation leaks, moisture build-up and HVAC faults. Moreover, 3D models generated from subsequent audits of the same environment can be automatically compared to detect temporal changes in conditions and energy use over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We thank Dr. Burd et al. for taking an interest in our paper [1]. The retrospective cohort study was performed and published for two reasons. Firstly, we wished to compare and contrast the use of Acticoat™ and Silvazine™, and secondly we wished to demonstrate how one's practice can be dramatically altered by a change in dressing used. We found that Acticoat™ was safe and easy to use, caused less trauma to patients, required less frequent dressing changes and enabled treatment to be conducted on an outpatient, rather than an inpatient basis. During the period of Acticoat™ treatment we also saw a dramatic reduction in grafting requirements and also in the need for long-term scar management. Burd et al. correctly state that silver-based dressings are now more widely available, however many burn centres in the world continue to use silver sulphadiazine with daily baths. We therefore feel that a comparison is very relevant and useful. Prospective, randomised clinical trials of a range of silver-based dressings would indeed be useful, and hopefully Dr. Burd and colleagues will take up their own suggestion and perform these studies...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recommendations for the first aid treatment of burn injuries have previously been based upon conflicting published studies and as a result the recommendations have been vague with respect to optimal first aid treatment modality, temperature, duration and delay after which treatment is still effective. The public have also continued to use treatments such as ice and alternative therapies, however there is little evidence to support their use. Recently there have been several studies conducted by burn researchers in Australia which have enabled the recommendations to be clarified. First aid should consist of cool running water (2-15°C), applied for 20 minutes duration, as soon as possible but for up to 3 hours after the burn injury has occurred. Ice should not be used and alternative therapies should only be used to relieve pain as an adjunct to cold water treatment. Optimal first aid treatment significantly reduces tissue damage, hastens wound re-epithelialisation and reduces scarring and should be promoted widely to the public.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter was developed as part of the ‘People, communities and economies of the Lake Eyre Basin’ project. It has been written for communities, government agencies and interface organisations involved in natural resource management (NRM) in the Lake Eyre Basin (LEB). Its purpose is to identify the key factors for successful community engagement processes relevant to the LEB and present tools and principles for successful engagement processes. The term ‘interface organisation’ is used here to refer to the diverse range of local and regional organisations (such as Catchment Committees or NRM Regional Bodies) that serve as linkages, or translators, between local communities and broader Australian and State Governments. The importance of fostering and harnessing effective processes of community engagement has been identified as crucial to building a prosperous future for rural and remote regions in Australia. The chapter presents an overview of the literature on successful community engagement processes for NRM, as well as an overview of the current NRM arrangements in the LEB. The main part of the chapter presents findings of the series of interviews conducted with the government liaison officers representing both state and federal organisations who are responsible for coordinating and facilitating regional NRM in the LEB, and with the members of communities of the LEB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray diffraction structure functions for water flowing in a 1.5 mm diameter siphon in the temperature range 4 – 63 °C were obtained using a 20 keV beam at the Australian Synchrotron. These functions were compared with structure functions obtained at the Advanced Light Source for a 0.5 mm thick sample of water in the temperature range 1 – 77 °C irradiated with an 11 keV beam. The two sets of structure functions are similar, but there are subtle differences in the shape and relative position of the two functions suggesting a possible differences between the structure of bulk and siphon water. In addition, the first structural peak (Q0) for water in a siphon, showed evidence of a step-wise increase in Q0 with increasing temperature rather than a smoothly varying increase. More experiments are required to investigate this apparent difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children are vulnerable to temperature extremes. This paper aimed to review the literature regarding the relationship between ambient temperature and children’s health and to propose future research directions. A literature search was conducted in February 2012 using the databases including PubMed, ProQuest, ScienceDirect, Scopus and Web of Science. Empirical studies regarding the impact of ambient temperature on children’s mortality and morbidity were included. The existing literature indicates that very young children, especially children under one year of age, are particularly vulnerable to heat-related deaths. Hot and cold temperatures mainly affect cases of infectious diseases among children, including gastrointestinal diseases, malaria, hand, foot and mouse disease, and respiratory diseases. Paediatric allergic diseases, like eczema, are also sensitive to temperature extremes. During heat waves, the incidences of renal disease, fever and electrolyte imbalance among children increase significantly. Future research is needed to examine the balance between hot- and cold-temperature related mortality and morbidity among children; evaluate the impacts of cold spells on cause-specific mortality in children; identify the most sensitive temperature exposure and health outcomes to quantify the impact of temperature extremes on children; elucidate the possible modifiers of the temperature and children’s health relationship; and project children’s disease burden under different climate change scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.