467 resultados para Business process model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Business Process Management (BPM) (Dumas et al. 2013) investigates how organizations function and can be improved on the basis of their business processes. The starting point for BPM is that organizational performance is a function of process performance. Thus, BPM proposes a set of methods, techniques and tools to discover, analyze, implement, monitor and control business processes, with the ultimate goal of improving these processes. Most importantly, BPM is not just an organizational management discipline. BPM also studies how technology, and particularly information technology, can effectively support the process improvement effort. In the past two decades the field of BPM has been the focus of extensive research, which spans an increasingly growing scope and advances technology in various directions. The main international forum for state-of-the-art research in this field is the International Conference on Business Process Management, or “BPM” for short—an annual meeting of the aca ...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

XACML has become the defacto standard for enterprise- wide, policy-based access control. It is a structured, extensible language that can express and enforce complex access control policies. There have been several efforts to extend XACML to support specific authorisation models, such as the OASIS RBAC profile to support Role Based Access Control. A number of proposals for authorisation models that support business processes and workflow systems have also appeared in the literature. However, there is no published work describing an extension to allow XACML to be used as a policy language with these models. This paper analyses the specific requirements of a policy language to express and enforce business process authorisation policies. It then introduces BP-XACML, a new profile that extends the RBAC profile for XACML so it can support business process authorisation policies. In particular, BP-XACML supports the notion of tasks, and constraints at the level of a task instance, which are important requirements in enforcing business process authorisation policies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper demonstrates the integration and usage of Process Query Language (PQL), a special-purpose programming language for querying large collections of process models based on process model behavior, in the Apromore open-source process model repository. The resulting environment provides a unique user experience when carrying out process model querying tasks. The tool is useful for researchers and practitioners working with large process model collections, and specifically for those with an interest in model retrieval tasks as part of process compliance, process redesign and process standardization initiatives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model based on the cluster process representation of the self-exciting process model in White and Porter 2013 and Ruggeri and Soyer 2008is derived to allow for variation in the excitation effects for terrorist events in a self-exciting or cluster process model. The details of the model derivation and implementation are given and applied to data from the Global Terrorism Database from 2000–2012. Results are discussed in terms of practical interpretation along with implications for a theoretical model paralleling existing criminological theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abnormally high price spikes in spot electricity markets represent a significant risk to market participants. As such, a literature has developed that focuses on forecasting the probability of such spike events, moving beyond simply forecasting the level of price. Many univariate time series models have been proposed to dealwith spikes within an individual market region. This paper is the first to develop a multivariate self-exciting point process model for dealing with price spikes across connected regions in the Australian National Electricity Market. The importance of the physical infrastructure connecting the regions on the transmission of spikes is examined. It is found that spikes are transmitted between the regions, and the size of spikes is influenced by the available transmission capacity. It is also found that improved risk estimates are obtained when inter-regional linkages are taken into account.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Process view technology is catching more attentions in modern business process management, as it enables the customisation of business process representation. This capability helps improve the privacy protection, authority control, flexible display, etc., in business process modelling. One of approaches to generate process views is to allow users to construct an aggregate on their underlying processes. However, most aggregation approaches stick to a strong assumption that business processes are always well-structured, which is over strict to BPMN. Aiming to build process views for non-well-structured BPMN processes, this paper investigates the characteristics of BPMN structures, tasks, events, gateways, etc., and proposes a formal process view aggregation approach to facilitate BPMN process view creation. A set of consistency rules and construction rules are defined to regulate the aggregation and guarantee the order preservation, structural and behaviour correctness and a novel aggregation technique, called EP-Fragment, is developed to tackle non-well-structured BPMN processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overprocessing waste occurs in a business process when effort is spent in a way that does not add value to the customer nor to the business. Previous studies have identied a recurrent overprocessing pattern in business processes with so-called "knockout checks", meaning activities that classify a case into "accepted" or "rejected", such that if the case is accepted it proceeds forward, while if rejected, it is cancelled and all work performed in the case is considered unnecessary. Thus, when a knockout check rejects a case, the effort spent in other (previous) checks becomes overprocessing waste. Traditional process redesign methods propose to order knockout checks according to their mean effort and rejection rate. This paper presents a more fine-grained approach where knockout checks are ordered at runtime based on predictive machine learning models. Experiments on two real-life processes show that this predictive approach outperforms traditional methods while incurring minimal runtime overhead.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organisations are always focussed on ensuring that their business operations are performed in the most cost-effective manner, and that processes are responsive to ever-changing cost pressures. In many organisations, however, strategic cost-based decisions at the managerial level are not directly or quickly translatable to process-level operational support. A primary reason for this disconnect is the limited system-based support for cost-informed decisions at the process-operational level in real time. In this paper, we describe the different ways in which a workflow management system can support process-related decisions, guided by cost-informed considerations at the operational level, during execution. As a result, cost information is elevated from its non-functional attribute role to a first-class, fully functional process perspective. The paper defines success criteria that a WfMS should meet to provide such support, and discusses a reference implementation within the YAWL workflow environment that demonstrates how the various types of cost-informed decision rules are supported, using an illustrative example.