407 resultados para Authenticated key exchange
Resumo:
Issues addressed: Hand hygiene in hospitals is vital to limit the spread of infections. This study aimed to identify key beliefs underlying hospital nurses’ hand-hygiene decisions to consolidate strategies that encourage compliance. Methods: Informed by a theory of planned behaviour belief framework, nurses from 50 Australian hospitals (n = 797) responded to how likely behavioural beliefs (advantages and disadvantages), normative beliefs (important referents) and control beliefs (barriers) impacted on their hand-hygiene decisions following the introduction of a national ‘5 moments for hand hygiene’ initiative. Two weeks after completing the survey, they reported their hand-hygiene adherence. Stepwise regression analyses identified key beliefs that determined nurses’ hand-hygiene behaviour. Results: Reducing the chance of infection for co-workers influenced nurses’ hygiene behaviour, with lack of time and forgetfulness identified as barriers. Conclusions: Future efforts to improve hand hygiene should highlight the potential impact on colleagues and consider strategies to combat time constraints, as well as implementing workplace reminders to prompt greater hand-hygiene compliance. So what? Rather than emphasising the health of self and patients in efforts to encourage hand-hygiene practices, a focus on peer protection should be adopted and more effective workplace reminders should be implemented to combat forgetting.
Resumo:
Objective The main aim of this study was to identify young drivers' underlying beliefs (i.e., behavioral, normative, and control) regarding initiating, monitoring/reading, and responding to social interactive technology (i.e., functions on a Smartphone that allow the user to communicate with other people). Method This qualitative study was a beliefs elicitation study in accordance with the Theory of Planned Behavior and sought to elicit young drivers' behavioral (i.e., advantages, disadvantages), normative (i.e., who approves, who disapproves), and control beliefs (i.e., barriers, facilitators) which underpin social interactive technology use while driving. Young drivers (N = 26) aged 17 to 25 years took part in an interview or focus group discussion. Results While differences emerged between the three behaviors of initiating, monitoring/reading, and responding for each of the behavioral, normative, and control belief categories, the strongest distinction was within the behavioral beliefs category (e.g., communicating with the person that they were on the way to meet was an advantage of initiating; being able to determine whether to respond was an advantage of monitoring/reading; and communicating with important people was an advantage of responding). Normative beliefs were similar for initiating and responding behaviors (e.g., friends and peers more likely to approve than other groups) and differences emerged for monitoring/reading (e.g., parents were more likely to approve of this behavior than initiating and responding). For control beliefs, there were differences between the beliefs regarding facilitators of these behaviors (e.g., familiar roads and conditions facilitated initiating; having audible notifications of an incoming communication facilitated monitoring/reading; and receiving a communication of immediate importance facilitated responding); however, the control beliefs that presented barriers were consistent across the three behaviors (e.g., difficult traffic/road conditions). Conclusion The current study provides an important addition to the extant literature and supports emerging research which suggests initiating, monitoring/reading, and responding may indeed be distinct behaviors with different underlying motivations.
Resumo:
Purpose The role of fine lactose in the dispersion of salmeterol xinafoate (SX) from lactose mixtures was studied by modifying the fine lactose concentration on the surface of the lactose carriers using wet decantation. Methods Fine lactose was removed from lactose carriers by wet decantation using ethanol saturated with lactose. Particle sizing was achieved by laser diffraction. Fine particle fractions (FPFs) were determined by Twin Stage Impinger using a 2.5% SX mixture, and SX was analyzed by a validated high-performance liquid chromatography method. Adhesion forces between probes of SX and silica and the lactose surfaces were determined by atomic force microscopy. Results FPFs of SX were related to fine lactose concentration in the mixture for inhalation grade lactose samples. Reductions in FPF (2-4-fold) of Aeroflo 95 and 65 were observed after removing fine lactose by wet decantation; FPFs reverted to original values after addition of micronized lactose to decanted mixtures. FPFs of SX of sieved and decanted fractions of Aeroflo carriers were significantly different (p < 0.001). The relationship between FPF and fine lactose concentration was linear. Decanted lactose demonstrated surface modification through increased SX-lactose adhesion forces; however, any surface modification other than removal of fine lactose only slightly influenced FPF. Conclusions Fine lactose played a key and dominating role in controlling FPF. SX to fine lactose ratios influenced dispersion of SX with maximum dispersion occurring as the ratio approached unity.
Resumo:
Supervisory Control and Data Acquisition (SCADA) systems are one of the key foundations of smart grids. The Distributed Network Protocol version 3 (DNP3) is a standard SCADA protocol designed to facilitate communications in substations and smart grid nodes. The protocol is embedded with a security mechanism called Secure Authentication (DNP3-SA). This mechanism ensures that end-to-end communication security is provided in substations. This paper presents a formal model for the behavioural analysis of DNP3-SA using Coloured Petri Nets (CPN). Our DNP3-SA CPN model is capable of testing and verifying various attack scenarios: modification, replay and spoofing, combined complex attack and mitigation strategies. Using the model has revealed a previously unidentified flaw in the DNP3-SA protocol that can be exploited by an attacker that has access to the network interconnecting DNP3 devices. An attacker can launch a successful attack on an outstation without possessing the pre-shared keys by replaying a previously authenticated command with arbitrary parameters. We propose an update to the DNP3-SA protocol that removes the flaw and prevents such attacks. The update is validated and verified using our CPN model proving the effectiveness of the model and importance of the formal protocol analysis.
Resumo:
The last three decades have been difficult for companies and industry. In an increasingly competitive international business climate with shifting national environmental regulations, higher standards are being demanded by the consumer and community groups, not-to-mention the escalating cost of primary resources such as water, steel and minerals. The cause of these pressures is the traditional notion held by business executives and engineers that there is an inherent trade off between eco-efficiency and improving the economic bottom line. However there is significant evidence and examples of best practice to show that there is in fact no trade-off between the environment and the economy if sustainable development through continual improvement is adopted. It is highly possible therefore for companies to make a profitable transition towards sustainable business practice, where along the transition significant business opportunities can be taken advantage of. Companies are by their very nature dynamic, influential and highly capable of adapting to change. Making an organisational transformation to a sustainable business is not outside the capacity of the typical company, who know much of what is needed already to change their activities to satisfy current market demands while achieving competitiveness. However in order to make the transition towards sustainable business practice companies require some key mechanisms such as accurate information on methodologies and opportunities, understanding of the financial and non-financial incentives, permission from stakeholders and shareholders, understanding of the emerging market opportunities, a critical mass of leaders in their sector and demonstrated case studies, and awarding appropriate risk-taking activities undertaken by engineers and CEOs. Satisfying these requirements will adopt an innovative culture within the company that strives for continual improvement and successfully transforms itself to achieve competitiveness in the 21st Century. This paper will summarise the experiences of The Natural Edge Project (TNEP) and its partners in assisting organisations to make a profitable transition towards sustainable business practice through several initiatives. The Natural Advantage of Nations publication provides the critical information required by business leaders and engineers to set the context of sustainable business practice. The Profiting in a Carbon Constrained World report, developed with Natural Capitalism Inc led by Hunter Lovins, summarises the opportunities available to companies to take advantage of the carbon trading market mechanisms such as the Chicago Climate Exchange and European Climate Exchange. The Sustainability Helix then guides the company through the transition by identifying the key tools and methodologies required by companies to reduce environmental loading while dramatically improving resource productivity and achieving competitiveness. Finally, the Engineering Sustainable Solutions Program delivers the key engineering information required by companies and university departments to deliver sustainable engineering solutions. The initiatives are of varying complexity and level of application, however all are designed to provide key staff the critical information required to make a profitable transition towards sustainable business practice. It is then their responsibility to apply and teach their knowledge to the rest of the organisation.
Resumo:
The Bruneau-Jarbidge eruptive center (BJEC) in the central Snake River Plain, Idaho, USA consists of the Cougar Point Tuff (CPT), a series of ten, high-temperature (900-1000°C) voluminous ignimbrites produced over the explosive phase of volcanism (12.8-10.5 Ma) and more than a dozen equally high-temperature rhyolite lava flows produced during the effusive phase (10.5-8 Ma). Spot analyses by ion microprobe of oxygen isotope ratios in 210 zircons demonstrate that all of the eruptive units of the BJEC are characterized by zircon δ¹⁸O values ≤ 2.5‰, thus documenting the largest low δ¹⁸O silicic volcanic province known on Earth (>10⁴ km³). There is no evidence for voluminous normal δ¹⁸O magmatism at the BJEC that precedes generation of low δ¹⁸O magmas as there is at other volcanic centers that generate low δ¹⁸O magmas such as Heise and Yellowstone. At these younger volcanic centers of the hotspot track, such low δ¹⁸O magmas represent ~45 % and ~20% respectively of total eruptive volumes. Zircons in all BJEC tuffs and lavas studied (23 units) document strong δ¹⁸O depletion (median CPT δ¹⁸OZrc = 1.0‰, post-CPT lavas = 1.5‰) with the third member of the CPT recording an excursion to minimum δ¹⁸O values (δ¹⁸OZrc= -1.8‰) in a supereruption > 2‰ lower than other voluminous low δ¹⁸O rhyolites known worldwide (δ¹⁸OWR ≤0.9 vs. 3.4‰). Subsequent units of the CPT and lavas record a progressive recovery in δ¹⁸OZrc to ~2.5‰ over a ~ 4 m.y. interval (12 to 8 Ma). We present detailed evidence of unit-to-unit systematic patterns in O isotopic zoning in zircons (i.e. direction and magnitude of Δcore-rim), spectrum of δ¹⁸O in individual units, and zircon inheritance patterns established by re-analysis of spots for U-Th-Pb isotopes by LA-ICPMS and SHRIMP. In conjunction with mineral thermometry and magma compositions, these patterns are difficult to reconcile with the well-established model for "cannibalistic" low δ¹⁸O magma genesis at Heise and Yellowstone. We present an alternative model for the central Snake River Plain using the modeling results of Leeman et al. (2008) for ¹⁸O depletion as a function of depth in a mid-upper crustal protolith that was hydrothermally altered by infiltrating meteoric waters prior to the onset of silicic magmatism. The model proposes that BJEC silicic magmas were generated in response to the propagation of a melting front, driven by the incremental growth of a vast underlying mafic sill complex, over a ~5 m.y. interval through a crustal volume in which a vertically asymmetric δ¹⁸OWR gradient had previously developed that was sharply inflected from ~ -1 to 10‰ at mid-upper crustal depths. Within the context of the model, data from BJEC zircons are consistent with incremental melting and mixing events in roof zones of magma reservoirs that accompany surfaceward advance of the coupled mafic-silicic magmatic system.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
Purpose The purpose of this study is to compare quality perceptions of virtual servicescapes and physical service encounters among buyers and renters of real estate. Design/methodology/approach Qualitative data from a sample of 27 professionals engaged in higher education in the USA are gathered by recorded interview before being transcribed and imported into MAXQDA 2007 software for analytical coding. Findings Particular differences are found to exist between renters and buyers with regard to specific service attributes – for example, description of properties and type of visuals during the pre‐purchase stage, knowledge/experience and honest behavior of realtors during the service encounter stage and a continuous relationship with the realtor in the post‐encounter stage. Research limitations/implications Generalization of the results is limited because the study utilizes data from only one industry (real estate) and from only one demographic segment (professionals in higher education). Practical implications Real‐estate firms need to pay attention to both the training of agents and the design and content of their websites. Originality/value This paper contributes to knowledge regarding virtual servicescapes in professional services.
Resumo:
Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.
Resumo:
Common to many types of water and wastewater is the presence of sodium ions which can be removed by desalination technologies, such as reverse osmosis and ion exchange. The focus of this investigation was ion exchange as it potentially offered several advantages compared to competing methods. The equilibrium and column behaviour of a strong acid cation (SAC) resin was examined for the removal of sodium ions from aqueous sodium chloride solutions of varying normality as well as a coal seam gas water sample. The influence of the bottle-point method to generate the sorption isotherms was evaluated and data interpreted with the Langmuir Vageler, Competitive Langmuir, Freundlich, and Dubinin-Astakhov models. With the constant concentration bottle point method, the predicted maximum exchange levels of sodium ions on the resin ranged from 61.7 to 67.5 g Na/kg resin. The general trend was that the lower the initial concentration of sodium ions in the solution, the lower the maximum capacity of the resin for sodium ions. In contrast, the constant mass bottle point method was found to be problematic in that the isotherm profiles may not be complete, if experimental parameters were not chosen carefully. Column studies supported the observations of the equilibrium studies, with maximum sodium loading of ca. 62.9 g Na/kg resin measured, which was in excellent agreement with the predictions of the data from the constant concentration bottle point method. Equilibria involving coal seam gas water were more complex due to the presence of sodium bicarbonate in solution, albeit the maximum loading capacity for sodium ions was in agreement with the results from the more simple sodium chloride solutions.
Resumo:
The cultural and creative industries are closely intertwined with government. This chapter reviews key economic rationales for public policy interventions for the arts, cultural and creative industries. Market failure justifications depend on the status of arts and culture as non-rival public goods, as ‘merit goods’, or the need to moderate the effects of up-front investment costs or monopoly, and the inherent uncertainty of creative production. ‘Systems failure’ too is a regular rationale for policy intervention. Using the United Kingdom as an example, the chapter shows how emphasis on these rationales has shifted over the last three decades, first in the context of industrial policies for traditional aims such as exports and job growth, which have been joined in recent years by the need for investment in intangibles, knowledge exchange, and spillover effects in the wider economy.
Resumo:
Road agencies face growing pressure to respond to a range of issues associated with climate change and the reliance on fossil fuels. A key part of this response will be to reduce the dependency on fossil fuel based energy (and the associated greenhouse gas emissions) of transport, both vehicles and infrastructure. This paper presents findings of investigations into three key areas of innovative technologies and processes, namely the inclusion of onsite renewable energy generation technologies as part of road and transport infrastructure, the potential for automated motorways to reduce traffic fuel consumption (referred to as 'Smart Roads'), and the reduction of energy demand from route and signal lighting. The paper then concludes with the recommendation for the engineering profession to embrace sustainability performance assessment and rating tools as the basis for enhancing and communicating the contribution to Australia's response to climate change. Such tools provide a rigorous structure that can standardise approaches to key issues across entire sectors and provide clarity on the evidence required to demonstrate leading performance. The paper has been developed with funding and support provided by Australia's Sustainable Built Environment National Research Centre (SBEnrc), working with partners including Main Roads Western Australia, NSW Roads and Maritime Services, Queensland Department of Transport and Main Roads, John Holland Group, the Infrastructure Sustainability Council of Australia, Roads Australia, and the CRC for Low Carbon Living.
Resumo:
As transnational programs are often advocated as a knowledge transfer opportunity between the partner universities, this case study investigated the knowledge transfer (KT) processes between Indonesian and Australian universities through an undergraduate transnational program partnership (TPP). An inter-organisational KT theoretical framework from the business sector was adapted and used to guide the study. The data were generated through semi-structured interviews with key university officers and document analysis from two partner universities. Based on the thematic analysis of the data, the findings demonstrated that the curriculum mapping process facilitated KT. However, different intentions of the partner universities in establishing the program led to declining interest to conduct more KT when expectations were not met. The Indonesian university’s existing knowledge, acquired from other sources through processes that were serendipitous and based on individual lecturers’ personal experience, meant that KT opportunities through the TPP were not always pursued despite written agreement to exchange knowledge with the Australian partner. While KT most evidently resulted in institutional capacity development for the Indonesian university’s school that managed the TPP, dissemination of knowledge to other units within the university was more challenging due to communication problems between the units. Hence, other universities seeking to conduct KT through TPPs need to understand each partner university's intention in establishing the partnerships, identify the institutions' needs before seeking knowledge input from the partner university and improve the communication between and within the universities for sustainable benefits.
Resumo:
This project analyses and evaluates the integrity assurance mechanisms used in four Authenticated Encryption schemes based on symmetric block ciphers. These schemes are all cross chaining block cipher modes that claim to provide both confidentiality and integrity assurance simultaneously, in one pass over the data. The investigations include assessing the validity of an existing forgery attack on certain schemes, applying the attack approach to other schemes and implementing the attacks to verify claimed probabilities of successful forgeries. For these schemes, the theoretical basis of the attack was developed, the attack algorithm implemented and computer simulations performed for experimental verification.