554 resultados para tissue therapy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have designed a composite scaffold for potential use in tendon or ligament tissue engineering. The composite scaffold was made of a cellularized alginate gel that encapsulated a knitted structure. Our hypothesis was that the alginate would act as a cell carrier and deliver cells to the injury site while the knitted structure would provide mechanical strength to the composite construct. The mechanical behaviour and the degradation profile of the poly(lactic-co-glycolic acid) knitted scaffolds were evaluated. We found that our scaffolds had an elastic modulus of 750 MPa and that they lost their physical integrity within 7 weeks of in vitro incubation. Autologous rabbit mesenchymal stem cell seeded composite scaffolds were implanted in a 1-cm-long defect created in the rabbit tendon, and the biomechanical properties and the morphology of the regenerated tissues were evaluated after 13 weeks. The regenerated tendons presented higher normalized elastic modulus of (60%) when compared with naturally healed tendons (40%). The histological study showed a higher cell density and vascularization in the regenerated tendons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioreactors are defined as devices in which biological and/or biochemical processes develop under closely monitored and tightly controlled environmental and operating conditions (e.g. pH, temperature, mechanical conditions, nutrient supply and waste removal). In functional tissue engineering of musculoskeletal tissues, a bioreactor capable of controlling dynamic loading plays a determinant role. It has been shown that mechanical stretching promotes the expression of type I and III collagens, fibronectin, tenascin-C in cultured ligament fibroblasts (J.C.-H. Goh et al., Tissue Eng. 9 (2003), S31) and that human bone marrow mesenchymal stem cells (hBMMSC) – even in the absence of biochemical regulators – could be induced to differentiate into ligament-like fibroblast by the application of physiologically relevant cyclic strains (G. Vunjak-Novakovic et al., Ann. Rev. Biomed. Eng. 6 (2004), 131; H.A. Awad et al., Tissue Eng. 5 (1999), 267; R.G. Young et al., J. Orthop. Res. 16 (1998), 406). Different bioreactors are commercially available but they are too generic to be used for a given tissue, each tissue showing specific mechanical loading properties. In the case of ligament tissue engineering, the design of a bioreactor is still an open question. Our group proposes a bioreactor allowing cyclic traction–torsion on a scaffold seeded with stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims The Australasian Nutrition Care Day Survey (ANCDS) reported two-in-five patients consume ≤50% of the offered food in Australian and New Zealand hospitals. After controlling for confounders (nutritional status, age, disease type and severity), the ANCDS also established an independent association between poor food intake and increased in-hospital mortality. This study aimed to evaluate if medical nutrition therapy (MNT) could improve dietary intake in hospital patients eating poorly. Methods An exploratory pilot study was conducted in the respiratory, neurology and orthopaedic wards of an Australian hospital. At baseline, percentage food intake (0%, 25%, 50%, 75%, and 100%) was evaluated for each main meal and snack for a 24-hour period in patients hospitalised for ≥2 days and not under dietetic review. Patients consuming ≤50% of offered meals due to nutrition-impact symptoms were referred to ward dietitians for MNT. Food intake was re-evaluated on the seventh day following recruitment (post-MNT). Results 184 patients were observed over four weeks; 32 patients were referred for MNT. Although baseline and post-MNT data for 20 participants (68±17years, 65% females) indicated a significant increase in median energy and protein intake post-MNT (3600kJ/day, 40g/day) versus baseline (2250kJ/day, 25g/day) (p<0.05), the increased intake met only 50% of dietary requirements. Persistent nutrition impact symptoms affected intake. Conclusion In this pilot study whilst dietary intake improved, it remained inadequate to meet participants’ estimated requirements due to ongoing nutrition-impact symptoms. Appropriate medical management and early enteral feeding could be a possible solution for such patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients presenting for knee replacement on warfarin for medical reasons often require higher levels of anticoagulation peri-operatively than primary thromboprophylaxis and may require bridging therapy with heparin. We performed a retrospective case control study on 149 consecutive primary knee arthroplasty patients to investigate whether anti-coagulation affected short-term outcomes. Specific outcome measures indicated significant increases in prolonged wound drainage (26.8% of cases vs 7.3% of controls, p<0.001); superficial infection (16.8% vs 3.3%, p<0.001); deep infection (6.0% vs 0%, p<0.001); return-to-theatre for washout (4.7% vs 0.7%, p=0.004); and revision (4.7% vs 0.3%, p=0.001). Management of patients on long-term warfarin therapy following TKR is particularly challenging, as the surgeon must balance risk of thromboembolism against post-operative complications on an individual patient basis in order to optimise outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was  measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Closed soft tissue trauma (CSTT) can be the result of a blunt impact, or a prolonged crush injury and involves damage to the skin, muscles and the neurovascular system. It causes a variety of symptoms such as haematoma and in severe cases may result in hypoxia and necrosis. There is evidence that early vasculature changes following the injury delays the tissue healing [1]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma and the effect of this on CSTT healing is currently missing. Research aims: Developing an experimental rat model to characterise the structural changes to the vasculature after trauma qualitatively and quantitatively using micro CT. MATERIAL AND METHODS An impact device was developed to apply a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetised rats [3]. After euthanizing the animals at 6 hours after trauma, CSTT was qualitatively evaluated by macroscopic observations of the skin and muscles. For vasculature visualisation, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil) using an infusion pump (Figure 4). The overall changes to the vasculature as a result of impact trauma were characterised qualitatively based on the 3D reconstructed images of the vasculature (Figure 5). For a smaller region of interest, the morphological parameters such as vessel thickness (diameter), spacing, and average number per volume were quantified using the scanner’s software. RESULTS AND DISCUSSION Visual observation of CSTT has revealed a haematoma in some animals (Figure 3). Micro CT images indicate good perfusion of the vasculature with contrast agent, allowing the major vessels to be identified (Figure 5). Qualitatively and quantitatively, no differences between injured and non-injured legs were observed at 6 h after trauma. Further time points of 12h, 24h, 3 days and 14 days after trauma will be characterised for identifying temporal changes of the vasculature during healing. Histomorphometical studies are required for validation of the results derived from the micro CT imaging. CONCLUSION AND FUTURE DIRECTION Findings of this research may contribute towards the establishment of a fundamental basis for the quantitative assessment and monitoring of CSTT based on microvasculature changes after trauma, which will ultimately allow for optimising the clinical treatment and improve patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organ motion as a result of respiration is an important field of research for medical physics. Knowledge of magnitude and direction of this motion is necessary to allow for more accurate radiotherapy treatment planning. This will result in higher doses to the tumour whilst sparing healthy tissue. This project involved human trials, where the radiation therapy patient's kidneys were CT scanned under three different conditions; whilst free breathing (FB), breath-hold at normal tidal inspiration (BHIN), and breath-hold at normal tidal expiration (BHEX). The magnitude of motion was measured by recording the outline of the kidney from a Beam's Eye View (BEV). The centre of mass of this 2D shape was calculated for each set using "ImageJ" software and the magnitude of movement determined from the change in the centroid's coordinates between the BHIN and BHEX scans. The movement ranged from, for the left and right kidneys, 4-46mm and 2-44mm in the superior/inferior (axial) plane, 1-21mm and 2- 16mm in the anterior/posterior (coronal) plane, and 0-6mm and 0-8mm in the lateral/medial (sagittal) plane. From exhale to inhale, the kidneys tended to move inferiorly, anteriorly and laterally. A standard radiotherapy plan, designed to treat the para-aortics with opposed lateral fields was performed on the free breathing (planning) CT set. The field size and arrangement was set up using the same parameters for each subject. The prescription was to deliver 45 Gray in 25 fractions. This field arrangement and prescription was then copied over to the breath hold CT sets, and the dosimetric differences were compared using Dose Volume Histograms (DVH). The point of comparison for the three sets was recorded as the percentage volume of kidney receiving less than or equal to 10 Gray. The QUASAR respiratory motion phantom was used with the range of motion determined from the human study. The phantom was imaged, planned and treated with a linear accelerator with dose determined by film. The effect of the motion was measured by the change in the penumbra of the film and compared to the penumbra from the treatment planning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Access to hepatitis C (hereafter HCV) antiviral therapy has commonly excluded populations with mental health and substance use disorders because they were considered as having contraindications to treatment, particularly due to the neuropsychiatric effects of interferon that can occur in some patients. In this review we examined access to HCV interferon antiviral therapy by populations with mental health and substance use problems to identify the evidence and reasons for exclusion. Methods We searched the following major electronic databases for relevant articles: PsycINFO, Medline, CINAHL, Scopus, Google Scholar. The inclusion criteria comprised studies of adults aged 18 years and older, peer-reviewed articles, date range of (2002--2012) to include articles since the introduction of pegylated interferon with ribarvirin, and English language. The exclusion criteria included articles about HCV populations with medical co-morbidities, such as hepatitis B (hereafter HBV) and human immunodeficiency virus (hereafter HIV), because the clinical treatment, pathways and psychosocial morbidity differ from populations with only HCV. We identified 182 articles, and of these 13 met the eligibility criteria. Using an approach of systematic narrative review we identified major themes in the literature. Results Three main themes were identified including: (1) pre-treatment and preparation for antiviral therapy, (2) adherence and treatment completion, and (3) clinical outcomes. Each of these themes was critically discussed in terms of access by patients with mental health and substance use co-morbidities demonstrating that current research evidence clearly demonstrates that people with HCV, mental health and substance use co-morbidities have similar clinical outcomes to those without these co-morbidities. Conclusions While research evidence is largely supportive of increased access to interferon by people with HCV, mental health and substance use co-morbidities, there is substantial further work required to translate evidence into clinical practice. Further to this, we conclude that a reconsideration of the appropriateness of the tertiary health service model of care for interferon management is required and exploration of the potential for increased HCV care in primary health care settings.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but they have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in gel-MA based hydrogels, and show that with the incorporation of small quantities of photo-crosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesised ECM throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 96 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lean body mass (LBM) and muscle mass remains difficult to quantify in large epidemiological studies due to non-availability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n= 2220; 36% females; age 18-79 y) representing a wide range of body mass index (14-44 kg/m2) participated in this study. Their LBM including ALST was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height and weight explained > 90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of SFTs) increased the explained variation by 5-8% in the fully adjusted models predicting LBM and ALST. More complex equations using all the above anthropometric variables could predict the DXA measured LBM and ALST accurately as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively) as well as good agreement by Bland Altman analyses. These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition.