558 resultados para real-world
Resumo:
Robotics is a valuable tool for engaging students in the hands-on application of science, technology, engineering, and mathematics (STEM) concepts. Robotics competitions such as FIRST LEGO League (FLL) can increase students’ interest in the STEM subjects and can foster their problem solving and teamwork skills. This paper reports on a study investigating students’ perceptions on the influence of participating in a FLL competition on their learning. The students completed questionnaires regarding their perceptions of their learning during the FLL challenge and were also interviewed to gain a deeper understanding of their questionnaire responses. The results show that the students were engaged with the FLL challenge and held positive views regarding their experience. The results also suggest that students involved with the FLL challenge improved their learning about real-world applications, problem solving, engagement, communication, and the application of the technology/engineering cycle.
Resumo:
QUT Teaching and Learning Support Services 'Revisiting University Teaching’program for mid-career academics. 'Innovations in Teaching at QUT' presentations. Presentations were part of a 2 day program that provides opportunities for experienced academic staff with responsibilities for teaching to review their current teaching practices and explore innovations in teaching that will assist them to enhance student learning and develop their own scholarship of teaching. The presenter responded to the following: 1.What is the innovation you have incorporated into your teaching? - give a brief overview/ description/ demonstration of the innovation 2.What challenges/issues prompted you to make changes in your approach? Were they discipline specific? Operational? Opportunistic? 3.What factors did you need to consider in implementing these changes? Which factors enabled success or hindered? 4.What has this innovation achieved so far? How have learners responded? How have the broader teaching team and academic staff from other units in your course responded? 5.How could this innovation be used by other academics in their teaching? What do you see as the possibilities for further expansion of this innovation? (NB. This question could be answered as part of a final sharing of group discussion). Presenter: Shannon Satherley
Resumo:
QUT Learning and Teaching Unit Seminar Making a Real Difference: Learning and Teaching Grants Showcase This event recognised and shared teaching innovations, including those from faculty learning and teaching grants. The Showcase featured four ALTC Grant project leaders (Helen Partridge, Sylvia Edwards, Robyn Nash and Mary Ryan) who had recently completed or were about to complete their grants. Each QUT faculty nominated two 2010 faculty teaching and learning grant recipients to showcase grant outcomes via a poster. Poster: Shannon Satherley & Abbe Winter Changing Relationships: Engaging Students and Staff in the Design Studio 'In the design studio learning environment, traditional student and staff expectations are of close contact teaching and learning. However, in recent years increasing class sizes have meant students experiencing reduced personal staff attention, and increasingly feeling “anonymous” and correspondingly disengaged, to the detriment of quality learning (Carbone 1998: 8; Biggs 2003). Concurrently, there has been a necessary increase in teaching by sessional (casual) teaching staff at QUT, with varied levels of experience and assurance. While teachers primarily regard engagement as “cognitive and conative,” for students it is emotional: “... an essential need to feel that they were engaged with the context of their learning and that it was meaningful in some way” (Solomonides and Martin 2008: 18). As a response to these conditions, the Changing Relationships action-research project was run within a QUT School of Design studio unit in 2009 and 2010, based on the premise that engaged teaching can encourage emotionally engaged learning. The project inverted the structure of the traditional QUT studio unit, empowering both students and sessional staff with a sense of increased autonomy: literally changing the relationships within the studio learning environment.'
Resumo:
The foundations of Science, Technology, Engineering and Mathematics (STEM) education begins in the early years of schooling when students encounter formal learning experiences primarily in mathematics and science. Politicians, economists and industrialists recognise the importance of STEM in society, and therefore a number of strategies have been implemented to foster interest. Similarly, most students see the importance of science and mathematics in their lives, but school science and mathematics is usually seen as irrelevant, particularly by students in developed countries. This paper reports on the establishment and implementation of partnerships with industry experts from one jurisdiction which have, over a decade, attempted to reconcile the interests of youth and the contemporary world of science. Four case studies are presented and qualitative findings analyzed in terms of program outcomes and student engagement. The key finding is that the formation of relationships and partnerships, in which students have high degree of autonomy and sense of responsibility, is paramount to positive dispositions towards STEM. Those features of successful partnerships are also discussed. The findings raise some hope that innovative schools and partnerships can foster innovation and connect youth with the real world.
Resumo:
While substantial research on intelligent transportation systems has focused on the development of novel wireless communication technologies and protocols, relatively little work has sought to fully exploit proximity-based wireless technologies that passengers actually carry with them today. This paper presents the real-world deployment of a system that exploits public transit bus passengers’ Bluetooth-capable devices to capture and reconstruct micro- and macro-passenger behavior. We present supporting evidence that approximately 12% of passengers already carry Bluetooth-enabled devices and that the data collected on these passengers captures with almost 80 % accuracy the daily fluctuation of actual passengers flows. The paper makes three contributions in terms of understanding passenger behavior: We verify that the length of passenger trips is exponentially bounded, the frequency of passenger trips follows a power law distribution, and the microstructure of the network of passenger movements is polycentric.
Resumo:
This paper presents a case study chronicling the development of WebAIRS, an Australasian national anaesthetic incident reporting database for health care practitioners. WebAIRS is an example of the multidisciplinary nature of the IS discipline, incorporating IS theories, tools and principles in the creation of an IT artefact with significant real world application. This case study introduces the background of the project and the motivations for its conception including the need for critical incident reporting in anaesthesia, the process of its development using IT students and the problems identified following its national release among the anaesthetic community. The paper demonstrates the evolution of contemporary IS research and the IT artefact, and how each can be crucial foundations for hospitals of the future
Resumo:
An onboard payload may be seen in most instances as the “Raison d’Etre” for a UAV. It will define its capabilities, usability and hence market value. Large and medium UAV payloads exhibit significant differences in size and computing capability when compared with small UAVs. The latter have stringent size, weight, and power requirements, typically referred as SWaP, while the former still exhibit endless appetite for compute capability. The tendency for this type of UAVs (Global Hawk, Hunter, Fire Scout, etc.) is to increase payload density and hence processing capability. An example of this approach is the Northrop Grumman MQ-8 Fire Scout helicopter, which has a modular payload architecture that incorporates off-the-shelf components. Regardless of the UAV size and capabilities, advances in miniaturization of electronics are enabling the replacement of multiprocessing, power-hungry general-purpose processors for more integrated and compact electronics (e.g., FPGAs). Payloads play a significant role in the quality of ISR (intelligent, surveillance, and reconnaissance) data, and also in how quick that information can be delivered to the end user. At a high level, payloads are important enablers of greater mission autonomy, which is the ultimate aim in every UAV. This section describes common payload sensors and introduces two examples cases in which onboard payloads were used to solve real-world problems. A collision avoidance payload based on electro optical (EO) sensors is first introduced, followed by a remote sensing application for power line inspection and vegetation management.
Resumo:
Curriculum developers and researchers have promoted context-based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for student connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing conceptual understanding. This interpretive study explored the learning transactions in one 11th grade context-based chemistry classroom where the context was the local creek. The dialectic of agency/structure was used as a lens to examine how the practices in classroom interactions afforded students the agency for learning. The results suggest that first, fluid transitions were evident in the student–student interactions involving successful students; and second, fluid transitions linking concepts to context were evident in the students’ successful reports. The study reveals that the structures of writing and collaborating in groups enabled students’ agential and fluent movement between the field of the real-world creek and the field of the formal chemistry classroom. Furthermore, characteristics of academically successful students in context-based chemistry are highlighted. Research, teaching, and future directions for context-based science teaching are discussed.
Resumo:
There has been a rapid escalation in the development and evaluation of social and emotional well-being (SEW) programs in primary schools over the last few decades. Despite the plethora of programs available, primary teachers’ use of SEW programs is not well documented in Australian schools, with even less consideration of the factors influencing program use. A cross-sectional survey was undertaken with primary classroom teachers across twelve schools in the Brisbane and Sunshine Coast Education Districts in Queensland, Australia, during 2005. A checklist of SEW programs and an audit of SEW practices in schools were employed to investigate the number, range and types of SEW programs used by primary classroom teachers and the contextual factors influencing program use. Whilst the majority of implementation studies have been conducted under intervention conditions, this study was designed to capture primary classroom teachers’ day-to-day use of SEW programs and the factors influencing program use under real-world conditions. The findings of this research indicate that almost three quarters of the primary classroom teachers involved in the study reported using at least one SEW program during 2005. Wide variation in the number and range of programs used was evident, suggesting that teachers are autonomous in their use of SEW programs. Evidence-based SEW programs were used by a similar proportion of teachers to non-evidence-based programs. However, irrespective of the type of program used, primary teachers overwhelmingly reported using part of a SEW program rather than the whole program. This raises some issues about the quality of teachers’ program implementation in real-world practice, especially with respect to programs that are evidence-based. A content analysis revealed that a wide range of factors have been examined as potential influences on teachers’ implementation of health promotion programs in schools, including SEW programs, despite the limited number of studies undertaken to date. However, variation in the factors examined and study designs employed both within and across health promotion fields limited the extent to which studies could be compared. A methodological and statistical review also revealed substantial variation in the quality of reporting of studies. A variety of factors were examined as potential influences on primary classroom teachers’ use of SEW programs across multiple social-ecological levels of influence (ranging from community to school and individual levels). In this study, parent or caregiver involvement in class activities and the availability of wellbeing-related policies in primary schools were found to be influential in primary classroom teachers’ use of SEW programs. Teachers who often or always involve parents or caregivers in class activities were at a higher odds of program use relative to teachers who never or rarely involved parents or caregivers in class activities. However, teachers employed in schools with the highest number of wellbeing-related policies available were at a lower odds of program use relative to teachers employed in schools with fewer wellbeing-related policies available. Future research should investigate primary classroom teachers’ autonomy and motivations for using SEW programs and the reasons behind the selection and use of particular types of programs. A larger emphasis should also be placed upon teachers not using SEW programs to identify valid reasons for non-use. This would provide another step towards bridging the gap between the expectations of program developers and the needs of teachers who implement programs in practice. Additionally, the availability of wellbeing-related school policies and the types of activities that parents and caregivers are involved with in the classroom warrant more in-depth investigation. This will help to ascertain how and why these factors influence primary classroom teachers’ use of SEW programs on a day-to-day basis in schools.
Resumo:
The term design thinking is increasingly used to mean the human-centred 'open' problem solving process decision makers use to solve real world 'wicked' problems. Claims have been made that design thinking in this sense can radically improve not only product innovation but also decision making in other fields, such as management, public health, and organizations in general. Many design and management schools in North America and elsewhere now include course offerings in design thinking though little is known about how successful these are with students. The lack of such courses in Australia presents an opportunity to design a curriculum for design thinking, employing design thinking's own practices. This paper describes the development of a design thinking course at Swinburne University taught simultaneously in Melbourne and Hong Kong. Following a pilot of the course in Semester 1, 2011 with 90 enrolled students across the two countries, we describe lessons learned to date and future course considerations as it is being taught in its second iteration.
Resumo:
The term empathy has only existed in English for a little over a hundred years, but the idea of feeling with another person is an old one. Because of its perceived connection to moral behaviour, empathy and its development are of great interest to educators, policy makers, psychologists, and philosophers. Reading children’s literature is often considered important for developing (among other things) children’s ethical and empathic understandings of society and its people. However, claims as to the impact of reading on readers’ ability to become more empathic, tolerant, and better people are divided. While many readers may attribute positive influences that authors and texts have had on shaping their attitudes and actions, there is no guarantee that a desirable affective and cognitive response will follow the reading experience. The complexity of readers and texts refuses to be reduced to simple universal statements about the capacity of narrative empathy to create a particular kind of empathic reader or person: fiction that engages a reader with the emotional plight of a character does not necessarily translate into actions in the real world towards people who are similarly suffering, marginalized, or victimized. This chapter asks: Does children’s literature foster empathy? There are two implicit features of this question: one concerns narrative empathy; the other concerns empathic reader response. The discussion will focus on how a selection of ‘multicultural’ picture books attempts to create narrative empathy by focussing on cultural and spatial differences.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
This study aims to redefine spaces of learning to places of learning through the direct engagement of local communities as a way to examine and learn from real world issues in the city. This paper exemplifies Smart City Learning, where the key goal is to promote the generation and exchange of urban design ideas for the future development of South Bank, in Brisbane, Australia, informing the creation of new design policies responding to the needs of local citizens. Specific to this project was the implementation of urban informatics techniques and approaches to promote innovative engagement strategies. Architecture and Urban Design students were encouraged to review and appropriate real-time, ubiquitous technology, social media, and mobile devices that were used by urban residents to augment and mediate the physical and digital layers of urban infrastructures. Our study’s experience found that urban informatics provide an innovative opportunity to enrich students’ place of learning within the city.
Resumo:
In the real world there are many problems in network of networks (NoNs) that can be abstracted to a so-called minimum interconnection cut problem, which is fundamentally different from those classical minimum cut problems in graph theory. Thus, it is desirable to propose an efficient and effective algorithm for the minimum interconnection cut problem. In this paper we formulate the problem in graph theory, transform it into a multi-objective and multi-constraint combinatorial optimization problem, and propose a hybrid genetic algorithm (HGA) for the problem. The HGA is a penalty-based genetic algorithm (GA) that incorporates an effective heuristic procedure to locally optimize the individuals in the population of the GA. The HGA has been implemented and evaluated by experiments. Experimental results have shown that the HGA is effective and efficient.