473 resultados para failure time model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To develop and psychometrically test the Barriers to Nurses’ use of Physical Assessment Scale. Background There is growing evidence of failure to recognise hospitalised patients at risk of clinical deterioration, in part due to inadequate physical assessment by nurses. Yet, little is known about the barriers to nurses’ use of physical assessment in the acute hospital setting and no validated scales have been published. Design Instrument development study. Method Scale development was based on a comprehensive literature review, focus groups, expert review and psychometric evaluation. The scale was administered to 434 acute care registered nurses working at a large Australian teaching hospital between June and July 2013. Psychometric analysis included factor analysis, model fit statistics and reliability testing. Results The final scale was reduced to 38 items representing seven factors, together accounting for 57.7% of the variance: (1) reliance on others and technology, (2) lack of time and interruptions, (3) ward culture, (4) lack of confidence, (5) lack of nursing role models, (6) lack of influence on patient care, and; (7) specialty area. Internal reliability ranged from .70 to .86. Conclusion Findings provide initial evidence for the validity and reliability of the Barriers to Nurses’ use of Physical Assessment Scale and point to the importance of understanding the organisational determinants of nurses’ assessment practices. The new scale has potential clinical and research applications to support nursing assessment in acute care settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sri Lanka has one of the highest rates of natural disasters and violent conflicts in the world. Yet there is a lack of research on its unique socio-cultural characteristics that determine an individual's cognitive and behavioural responses to distressing encounters. This study extends Goh, Sawang and Oei's (2010) revised transactional model to examine the cognitive and behavioural processes of occupational stress experience in the collectivistic society of Sri Lanka. A time series survey was used to measure the participant's stress-coping process. Using the revised transactional model and path analysis, a unique Sri Lankan model is identified that provides theoretical insights on the revised transactional model, and sheds light on socio-cultural dimensions of occupational stress and coping, thus equipping practitioners with a sound theoretical basis for the development of stress management programs in the workplace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite robustness in terms change of the hyperparamaters. The spatial correlations are appeared in both intercepts and slopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The safety of passengers is a major concern to airports. In the event of crises, having an effective and efficient evacuation process in place can significantly aid in enhancing passenger safety. Hence, it is necessary for airport operators to have an in-depth understanding of the evacuation process of their airport terminal. Although evacuation models have been used in studying pedestrian behaviour for decades, little research has been done in considering the evacuees’ group dynamics and the complexity of the environment. In this paper, an agent-based model is presented to simulate passenger evacuation process. Different exits were allocated to passengers based on their location and security level. The simulation results show that the evacuation time can be influenced by passenger group dynamics. This model also provides a convenient way to design airport evacuation strategy and examine its efficiency. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study used automated data processing techniques to calculate a set of novel treatment plan accuracy metrics, and investigate their usefulness as predictors of quality assurance (QA) success and failure. 151 beams from 23 prostate and cranial IMRT treatment plans were used in this study. These plans had been evaluated before treatment using measurements with a diode array system. The TADA software suite was adapted to allow automatic batch calculation of several proposed plan accuracy metrics, including mean field area, small-aperture, off-axis and closed-leaf factors. All of these results were compared the gamma pass rates from the QA measurements and correlations were investigated. The mean field area factor provided a threshold field size (5 cm2, equivalent to a 2.2 x 2.2 cm2 square field), below which all beams failed the QA tests. The small aperture score provided a useful predictor of plan failure, when averaged over all beams, despite being weakly correlated with gamma pass rates for individual beams. By contrast, the closed leaf and off-axis factors provided information about the geometric arrangement of the beam segments but were not useful for distinguishing between plans that passed and failed QA. This study has provided some simple tests for plan accuracy, which may help minimise time spent on QA assessments of treatments that are unlikely to pass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulated rail joints are critical for train safety as they control electrical signalling systems; unfortunately they exhibit excessive ratchetting of the railhead near the endpost insulators. This paper reports a three-dimensional global model of these joints under wheel–rail contact pressure loading and a sub-model examining the ratchetting failures of the railhead. The sub-model employs a non-linear isotropic–kinematic elastic–plastic material model and predicts stress/strain levels in the localised railhead zone adjacent to the endpost which is placed in the air gap between the two rail ends at the insulated rail joint. The equivalent plastic strain plot is utilised to capture the progressive railhead damage adequately. Associated field and laboratory testing results of damage to the railhead material suggest that the simulation results are reasonable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives Given increasing trends of obesity being noted from early in life and that active lifestyles track across time, it is important that children at a very young age be active to combat a foundation of unhealthy behaviours forming. This study investigated, within a theory of planned behaviour (TPB) framework, factors which influence mothers’ decisions about their child’s 1) adequate physical activity (PA) and 2) limited screen time behaviours. Methods Mothers (N = 162) completed a main questionnaire, via on-line or paper-based administration, which comprised standard TPB items in addition to measures of planning and background demographic variables. One week later, consenting mothers completed a follow-up telephone questionnaire which assessed the decisions they had made regarding their child’s PA and screen time behaviours during the previous week. Results Hierarchical multiple regression analyses revealed support for the predictive model, explaining an overall 73% and 78% of the variance in mothers’ intention and 38% and 53% of the variance in mothers’ decisions to ensure their child engages in adequate PA and limited screen time, respectively. Attitude and subjective norms predicted intention in both target behaviours, as did intentions with behaviour. Contrary to predictions, perceived behavioural control (PBC) in PA behaviour and planning in screen time behaviour were not significant predictors of intention, neither was PBC a predictor of either behaviour. Conclusions The findings illustrate the various roles that psycho-social factors play in mothers’ decisions to ensure their child engages in active lifestyle behaviours which can help to inform future intervention programs aimed at combating very young children’s inactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction The acute health effects of heatwaves in a subtropical climate and their impact on emergency departments (ED) are not well known. The purpose of this study is to examine overt heat-related presentations to EDs associated with heatwaves in Brisbane. Methods Data were obtained for the summer seasons (December to February) from 2000-2012. Heatwave events were defined as two or more successive days with daily maximum temperature >=34[degree sign]C (HWD1) or >=37[degree sign]C (HWD2). Poisson generalised additive model was used to assess the effect of heatwaves on heat-related visits (International Classification of Diseases (ICD) 10 codes T67 and X30; ICD 9 codes 992 and E900.0). Results Overall, 628 cases presented for heat-related illnesses. The presentations significantly increased on heatwave days based on HWD1 (relative risk (RR) = 4.9, 95% confidence interval (CI): 3.8, 6.3) and HWD2 (RR = 18.5, 95% CI: 12.0, 28.4). The RRs in different age groups ranged between 3-9.2 (HWD1) and 7.5-37.5 (HWD2). High acuity visits significantly increased based on HWD1 (RR = 4.7, 95% CI: 2.3, 9.6) and HWD2 (RR = 81.7, 95% CI: 21.5, 310.0). Average length of stay in ED significantly increased by >1 hour (HWD1) and >2 hours (HWD2). Conclusions Heatwaves significantly increase ED visits and workload even in a subtropical climate. The degree of impact is directly related to the extent of temperature increases and varies by socio-demographic characteristics of the patients. Heatwave action plans should be tailored according to the population needs and level of vulnerability. EDs should have plans to increase their surge capacity during heatwaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addressing the Crew Scheduling Problem (CSP) in transportation systems can be too complex to capture all details. The designed models usually ignore or simplify features which are difficult to formulate. This paper proposes an alternative formulation using a Mixed Integer Programming (MIP) approach to the problem. The optimisation model integrates the two phases of pairing generation and pairing optimisation by simultaneously sequencing trips into feasible duties and minimising total elapsed time of any duty. Crew scheduling constraints in which the crew have to return to their home depot at the end of the shift are included in the model. The flexibility of this model comes in the inclusion of the time interval of relief opportunities, allowing the crew to be relieved during a finite time interval. This will enhance the robustness of the schedule and provide a better representation of real-world conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.