430 resultados para detection lags
Resumo:
This paper outlines the approach taken by the Speech, Audio, Image and Video Technologies laboratory, and the Applied Data Mining Research Group (SAIVT-ADMRG) in the 2014 MediaEval Social Event Detection (SED) task. We participated in the event based clustering subtask (subtask 1), and focused on investigating the incorporation of image features as another source of data to aid clustering. In particular, we developed a descriptor based around the use of super-pixel segmentation, that allows a low dimensional feature that incorporates both colour and texture information to be extracted and used within the popular bag-of-visual-words (BoVW) approach.
Resumo:
Objective. To test the impact of a theory-based, SMS (text message)-delivered behavioural intervention (Healthy Text) targeting sun protection or skin self-examination behaviours compared to attention-control. Method. Overall, 546 participants aged 18–42 years were randomised using a computer-generated number list to the skin self-examination (N = 176), sun protection (N = 187), or attention-control (N = 183) text messages group. Each group received 21 text messages about their assigned topic over 12 months (12 weekly messages for three months, then monthly messages for the next nine months). Data was collected via telephone survey at baseline, three-, and 12-months across Queensland from January 2012 to August 2013. Results. One year after baseline, the sun protection (mean change 0.12; P = 0.030) and skin self-examination groups (mean change 0.12; P = 0.035) had significantly greater improvement in their sun protection habits (SPH) index compared to the attention-control group (reference mean change 0.02). The increase in the proportion of participants who reported any skin self-examination from baseline to 12 months was significantly greater in the skin self-examination intervention group (103/163; 63%; P < 0.001) than the sun protection (83/173; 48%), or attention-control (65/165; 36%) groups. There was no significant effect of the intervention for participants who self-reported whole-body skin self-examination, sun tanning behaviour, or sunburn behaviours. Conclusion. The Healthy Text intervention was effective in inducing significant improvements in sun protection and any type of skin self-examination behaviours.
Resumo:
Background Rapid diagnostic tests (RDTs) for detection of Plasmodium falciparum infection that target P. falciparum histidine-rich protein 2 (PfHRP2), a protein that circulates in the blood of patients infected with this species of malaria, are widely used to guide case management. Understanding determinants of PfHRP2 availability in circulation is therefore essential to understanding the performance of PfHRP2-detecting RDTs. Methods The possibility that pre-formed host anti-PfHRP2 antibodies may block target antigen detection, thereby causing false negative test results was investigated in this study. Results Anti-PfHRP2 antibodies were detected in 19/75 (25%) of plasma samples collected from patients with acute malaria from Cambodia, Nigeria and the Philippines, as well as in 3/28 (10.7%) asymptomatic Solomon Islands residents. Pre-incubation of plasma samples from subjects with high-titre anti-PfHRP2 antibodies with soluble PfHRP2 blocked the detection of the target antigen on two of the three brands of RDTs tested, leading to false negative results. Pre-incubation of the plasma with intact parasitized erythrocytes resulted in a reduction of band intensity at the highest parasite density, and a reduction of lower detection threshold by ten-fold on all three brands of RDTs tested. Conclusions These observations indicate possible reduced sensitivity for diagnosis of P. falciparum malaria using PfHRP2-detecting RDTs among people with high levels of specific antibodies and low density infection, as well as possible interference with tests configured to detect soluble PfHRP2 in saliva or urine samples. Further investigations are required to assess the impact of pre-formed anti-PfHRP2 antibodies on RDT performance in different transmission settings.
Resumo:
We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale), the Quadratic Scoring Rule (a post-wagering procedure), and the Matching Probability (MP; a generalization of the no-loss gambling method). We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory (SDT). We find that the MP provides better results in that respect. We conclude that MP is particularly well suited for studies of confidence that use SDT as a theoretical framework.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.
Resumo:
Evidence is needed for the acceptability and user preferences of receiving skin cancer-related text messages. We prepared 27 questions to evaluate attitudes, satisfaction with program characteristics such as timing and spacing, and overall satisfaction with the Healthy Text program in young adults. Within this randomised controlled trial (age 18-42 years), 546 participants were assigned to one of three Healthy Text message groups; sun protection, skin self-examination, or attention-control. Over a 12-month period, 21 behaviour-specific text messages were sent to each group. Participants’ preferences were compared between the two interventions and control group at the 12-month follow-up telephone interview. In all three groups, participants reported the messages were easy to understand (98%), provided good suggestions or ideas (88%), and were encouraging (86%) and informative (85%) with little difference between the groups. The timing of the texts was received positively (92%); however, some suggestions for frequency or time of day the messages were received from 8% of participants. Participants in the two intervention groups found their messages more informative, and triggering behaviour change compared to control. Text messages about skin cancer prevention and early detection are novel and acceptable to induce behaviour change in young adults.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
This project focused on maximising the detection range of an eye-safe stand-off Raman system for use in detecting explosives. Investigation of the effect on detection range through differing laser parameters in this thesis provided optimal laser settings to achieve the largest possible detection range of explosives, while still remaining under the eye-safe limit.
Resumo:
Peptides constructed from α-helical subunits of the Lac repressor protein (LacI) were designed then tailored to achieve particular binding kinetics and dissociation constants for plasmid DNA purification and detection. Surface plasmon resonance was employed for quantification and characterization of the binding of double stranded Escherichia coli plasmid DNA (pUC19) via the lac operon (lacO) to "biomimics" of the DNA binding domain of LacI. Equilibrium dissociation constants (K D), association (k a), and dissociation rates (k d) for the interaction between a suite of peptide sequences and pUC19 were determined. K D values measured for the binding of pUC19 to the 47mer, 27mer, 16mer, and 14mer peptides were 8.8 ± 1.3 × 10 -10 M, 7.2 ± 0.6 × 10 -10 M, 4.5 ± 0.5 × 10 -8 M, and 6.2 ± 0.9 × 10 -6 M, respectively. These findings show that affinity peptides, composed of subunits from a naturally occurring operon-repressor interaction, can be designed to achieve binding characteristics suitable for affinity chromatography and biosensor devices.
Resumo:
Corner detection has shown its great importance in many computer vision tasks. However, in real-world applications, noise in the image strongly affects the performance of corner detectors. Few corner detectors have been designed to be robust to heavy noise by now, partly because the noise could be reduced by a denoising procedure. In this paper, we present a corner detector that could find discriminative corners in images contaminated by noise of different levels, without any denoising procedure. Candidate corners (i.e., features) are firstly detected by a modified SUSAN approach, and then false corners in noise are rejected based on their local characteristics. Features in flat regions are removed based on their intensity centroid, and features on edge structures are removed using the Harris response. The detector is self-adaptive to noise since the image signal-to-noise ratio (SNR) is automatically estimated to choose an appropriate threshold for refining features. Experimental results show that our detector has better performance at locating discriminative corners in images with strong noise than other widely used corner or keypoint detectors.