378 resultados para bond steel-concrete


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During high wind events, crest-fixed profiled steel roof claddings in low-rise buildings can be subjected to combined cyclic wind uplift and in-plane racking (shear) forces. Static and cyclic tests of corrugated steel roof claddings were carried out to investigate the effect of in-plane racking force on the uplift strength, in particular, in relation to the fatigue cracking commonly observed under cyclic wind uplift. The presence of racking force appeared to have insignificant effect on the static and cyclic wind uplift strength. It may therefore be possible to include the diaphragm strength of these claddings in the design of low-rise buildings in a similar manner to valley-fixed claddings. This may lead to a reduction in bracing requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Profiled steel roof claddings in Australia and its neighbouring countries are commonly made of very thin high tensile steel and are crest-fixed intermittently with screw fasteners. The failure of the roof cladding systems was due to a local failure (dimpling of crests I pull-through) at the fasteners under wind uplift Cyclic wind uplift during cyclones causes fatigue cracking to occur at the fastener holes which leads to pull-through failures at lower load levels. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour and the design and test methods of these claddings under wind uplift loading during storms and cyclones, a detailed investigation consisting of finite element analyses, static and fatigue experiments and cyclonic wind modelling was carried out on two-span roofing assemblies of three common roofing profiles. This paper presents the details of this investigation and its important results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission technique has become a significant and powerful structural health monitoring tool for structures. Researches to date have been done on crack location, fatigue crack propagation in materials and severity assessment of failure using acoustic emission technique. Determining severity of failure in steel structures using acoustic emission technique is still a challenge to accurately determine the relationship between the severity of crack propagation and acoustic emission activities. In this study three point bending test on low carbon steel samples along with acoustic emission technique have been used to determine crack propagation and severity. A notch is introduced at the tension face of the loading point to the samples to initiate the crack. The results show that the percentage of load drop of the steel specimen has a reciprocal relationship with the crack opening i.e. crack opening zones are influenced by the loading rate. In post yielding region, common acoustic emission signal parameters such as, signal strength, energy and amplitudes are found to be higher than those at pre-yielding and at yielding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigated the influence of nano-silica (NS) on the mechanical and transport properties of lightweight concrete (LWC). The resistance of LWC to water and chloride ions penetration was enhanced despite strength marginally increased. Water penetration depth, moisture sorptivity, chloride migration and diffusion coefficient was reduced by 23% and 49%, 23% and 10%, 5% and 0%, 22% and 12% compared to the two reference LWC mixes (pure cement and 60% slag blended cement), respectively with 1% NS. Such improvements were attributed to more compact microstructures because the micropore system was refined and the interface between aggregates and paste was enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the details of an experimental study of cold-formed steel hollow section columns at ambient and elevated temperatures. In this study the global buckling behaviour of cold-formed Square Hollow Section (SHS) slender columns under axial compression was investigated at various uniform elevated temperatures up to 700℃. The results of these column tests are reported in this paper, which include the buckling/failure modes at elevated temperatures, and ultimate load versus temperature curves. Finite element models of tested columns were also developed and their behaviour and ultimate capacities at ambient and elevated temperatures were studied. Fire design rules given in European and American standards including the Direct Strength Method (DSM) based design rules were used to predict the ultimate capacities of tested columns at elevated temperatures. Elevated temperature mechanical properties and stress-strain models given in European steel design standards and past researches were used with design rules and finite element models to investigate their effects on SHS column capacities. Comparisons of column capacities from tests and finite element analyses with those predicted by current design rules were used to determine the accuracy of currently available column design rules in predicting the capacities of SHS columns at elevated temperatures and the need to use appropriate elevated temperature material stress-strain models. This paper presents the important findings derived from the comparisons of these column capacities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the society matures, there was an increasing pressure to preserve historic buildings. The economic cost in maintaining these important heritage legacies has become the prime consideration of every state. Dedicated intelligent monitoring systems supplementing the traditional building inspections will enable the stakeholder to carry out not only timely reactive response but also plan the maintenance in a more vigilant approach; thus, preventing further degradation which was very costly and difficult to address if neglected. The application of the intelligent structural health monitoring system in this case studies of ‘modern heritage’ buildings is on its infancy but it is an innovative approach in building maintenance. ‘Modern heritage’ buildings were the product of technological change and were made of synthetic materials such as reinforced concrete and steel. Architectural buildings that was very common in Oceania and The Pacific. Engineering problems that arose from this type of building calls for immediate engineering solution since the deterioration rate is exponential. The application of this newly emerging monitoring system will improve the traditional maintenance system on heritage conservation. Savings in time and resources can be achieved if only pathological results were on hand. This case study will validate that approach. This publication will serve as a position paper to the on-going research regarding application of (Structural Health Monitoring) SHM systems to heritage buildings in Brisbane, Australia. It will be investigated with the application of the SHM systems and devices to validate the integrity of the recent structural restoration of the newly re-strengthened heritage building, the Brisbane City Hall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study on the effectiveness of two forms of reinforced grout confining systems for hollow concrete block masonry. The systems considered are: (1) a layer of grout directly confining the unreinforced masonry, and (2) a layer of grout indirectly confining the unreinforced masonry through block shells. The study involves experimental testing and finite-element (FE) modeling of six diagonally loaded masonry panels containing the two confining systems. The failure mode, the ultimate load, and the load-deformation behaviors of the diagonally loaded panels were successfully simulated using the finite-element model. In-plane shear strength and stiffness of the masonry thus determined are used to evaluate some selected models of the confined masonry shear including the strut-and-tie model reported in the literature. The evaluated strut width is compared with the prediction of the FE model and then extended for rational prediction of the strength of confined masonry shear walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is a form of localized failure mode that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 42 tests were conducted in this research to investigate the web crippling behaviour and strengths of unlipped channels with stocky webs under ETF and ITF cases. DuraGal sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the currently available design rules for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential and commercial buildings as primary load bearing structural elements. They are often made of thin steel sheets and hence they are more susceptible to local buckling. The buckling behaviour of cold-formed steel compression members under fire conditions is not fully investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken to investigate the local buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. First a series of 91 local buckling tests was conducted at ambient and uniform elevated temperatures up to 700oC on cold-formed lipped and unlipped channels. Suitable finite element models were then developed to simulate the behaviour of tested columns and were validated using test results. All the ultimate load capacity results for local buckling were compared with the predictions from the available design rules based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Parts 1.2 and 1.3 and the direct strength method (DSM), based on which suitable recommendations have been made for the fire design of cold-formed steel compression members subject to local buckling at uniform elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin profiled steel roof sheeting and battens are increasingly used in the construction of roofing systems of residential, commercial, industrial and farm buildings in Australia. The critical load combination of external wind suction and internal wind pressures that occur during high wind events such as thunderstorms and tropical cylcones often dislocate the roofing systems partially or even completely due to premature roof connection failures. Past wind damage investigations have shown that roof sheeting failures occured at their screw connections to battens. In most of these cases, the screw fastener head pulled through the thin roof sheeting whilst the screw fasteners also pulled out from the battens. Research studis undertaken on the roof sheeting to batten connection failures have improved this situation. However, the batten to rafter or truss connections have not been investigated adequately. Failure of these connections can cause the failure of the entire roof structure as observed during the recent high wind events. Therefore a detailed experimental study consisting of both small scale and full scale tests has been undertaken to investigate the steel roof batten pull-through failures in relation to many critical parameters such as steel batten geometry, thickness and grade, screw fastener head sizes and screw tightening. This paper presents the details of this experimental study and the pull-through failure load results obtained from them. Finally it discusses the development of suitable design rules that can be used to determine the pull-through connection capacities of thin steel roof battens under wind uplift loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme wind events such as tropical cyclones, tornadoes and storms are more likely to impact the Australian coastal regions due to possible climate changes. Such events can be extremely destructive to building structures, in particular, low-rise buildings with lightweight roofing systems that are commonly made of thin steel roofing sheets and battens. Large wind uplift loads that act on the roofs during high wind events often cause premature roof connection failures. Recent wind damage investigations have shown that roof failures have mostly occurred at the batten to rafter or truss screw connections. In most of these cases, the screw fastener heads pulled through the bottom flanges of thin steel roof battens. This roof connection failure is very critical as both roofing sheets and battens will be lost during the high wind events. Hence, a research study was conducted to investigate this critical pull-through failure using both experimental and numerical methods. This paper presents the details of numerical modeling and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reveals the effects of layer orientation on structural behaviour of three layers configured (LHL, HHL, LLH) CFRP strengthened circular hollow section (CHS) members subjected to bending. The beams were loaded to failure under four-point bending. The structural behaviour of the CFRP strengthened tubular steel beams with various layer orientations were presented in terms of failure load, stiffness, composite beam action and modes of failure. The LHL and LLH layers oriented strengthened beams perform slightly better than HHL layers oriented strengthened beams. The LHL and LLH layers oriented treated beams showed very similar structural behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In strengthening systems, the CFRP (Carbon Fibre Reinforced Polymer) materials typically have excellent resistance against environmental conditions; however, the performance of adhesives between CFRP and steel is generally affected by various environmental conditions such as marine environment, cold and hot weather. This paper presents the comparative durability study of CFRP strengthened tubular steel structures by using two different adhesives such as MBrace saturant and Araldite K630 under four-point bending. The program consisted of testing twelve CFRP strengthened specimens having treated with epoxy based adhesion promoter, untreated surface and one unstrengthened specimen and conditioned under cold weather for 3 and 6 months to determine the environmental durability. The beams were then loaded to failure in quasi-static manner under four-point bending. The structural responses of CFRP strengthened tubular steel beams were compared in terms of failure load, stiffness and modes of failure. The research findings show that the cold weather immersion had adversely affected the durability of CFRP strengthened steel members. Design factor is also proposed to address the short-terms durability performance under cold weather.