335 resultados para Visual Ecology
Resumo:
Visual content is a critical component of everyday social media, on platforms explicitly framed around the visual (Instagram and Vine), on those offering a mix of text and images in myriad forms (Facebook, Twitter, and Tumblr), and in apps and profiles where visual presentation and provision of information are important considerations. However, despite being so prominent in forms such as selfies, looping media, infographics, memes, online videos, and more, sociocultural research into the visual as a central component of online communication has lagged behind the analysis of popular, predominantly text-driven social media. This paper underlines the increasing importance of visual elements to digital, social, and mobile media within everyday life, addressing the significant research gap in methods for tracking, analysing, and understanding visual social media as both image-based and intertextual content. In this paper, we build on our previous methodological considerations of Instagram in isolation to examine further questions, challenges, and benefits of studying visual social media more broadly, including methodological and ethical considerations. Our discussion is intended as a rallying cry and provocation for further research into visual (and textual and mixed) social media content, practices, and cultures, mindful of both the specificities of each form, but also, and importantly, the ongoing dialogues and interrelations between them as communication forms.
Resumo:
Scene understanding has been investigated from a mainly visual information point of view. Recently depth has been provided an extra wealth of information, allowing more geometric knowledge to fuse into scene understanding. Yet to form a holistic view, especially in robotic applications, one can create even more data by interacting with the world. In fact humans, when growing up, seem to heavily investigate the world around them by haptic exploration. We show an application of haptic exploration on a humanoid robot in cooperation with a learning method for object segmentation. The actions performed consecutively improve the segmentation of objects in the scene.
Resumo:
Bactrocera tryoni (Froggatt) is Australia's major horticultural insect pest, yet monitoring females remains logistically difficult. We trialled the ‘Ladd trap’ as a potential female surveillance or monitoring tool. This trap design is used to trap and monitor fruit flies in countries other (e.g. USA) than Australia. The Ladd trap consists of a flat yellow panel (a traditional ‘sticky trap’), with a three dimensional red sphere (= a fruit mimic) attached in the middle. We confirmed, in field-cage trials, that the combination of yellow panel and red sphere was more attractive to B. tryoni than the two components in isolation. In a second set of field-cage trials, we showed that it was the red-yellow contrast, rather than the three dimensional effect, which was responsible for the trap's effectiveness, with B. tryoni equally attracted to a Ladd trap as to a two-dimensional yellow panel with a circular red centre. The sex ratio of catches was approximately even in the field-cage trials. In field trials, we tested the traditional red-sphere Ladd trap against traps for which the sphere was painted blue, black or yellow. The colour of sphere did not significantly influence trap efficiency in these trials, despite the fact the yellow-panel/yellow-sphere presented no colour contrast to the flies. In 6 weeks of field trials, over 1500 flies were caught, almost exactly two-thirds of them being females. Overall, flies were more likely to be caught on the yellow panel than the sphere; but, for the commercial Ladd trap, proportionally more females were caught on the red sphere versus the yellow panel than would be predicted based on relative surface area of each component, a result also seen the field-cage trial. We determined that no modification of the trap was more effective than the commercially available Ladd trap and so consider that product suitable for more extensive field testing as a B. tryoni research and monitoring tool.
Resumo:
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.
Resumo:
The third edition of the Australian Standard AS1742 Manual of Uniform Traffic Control Devices Part 7 provides a method of calculating the sighting distance required to safely proceed at passive level crossings based on the physics of moving vehicles. This required distance becomes greater with higher line speeds and slower, heavier vehicles so that it may return quite a long sighting distance. However, at such distances, there are also concerns around whether drivers would be able to reliably identify a train in order to make an informed decision regarding whether it would be safe to proceed across the level crossing. In order to determine whether drivers are able to make reliable judgements to proceed in these circumstances, this study assessed the distance at which a train first becomes identifiable to a driver as well as their, ability to detect the movement of the train. A site was selected in Victoria, and 36 participants with good visual acuity observed 4 trains in the 100-140 km/h range. While most participants could detect the train from a very long distance (2.2 km on average), they could only detect that the train was moving at much shorter distances (1.3 km on average). Large variability was observed between participants, with 4 participants consistently detecting trains later than other participants. Participants tended to improve in their capacity to detect the presence of the train with practice, but a similar trend was not observed for detection of the movement of the train. Participants were consistently poor at accurately judging the approach speed of trains, with large underestimations at all investigated distances.