737 resultados para Post-fordist urban development
Resumo:
Low density suburban development and excessive use of automobiles are associated with serious urban and environmental problems. These problems include traffic congestion, longer commuting times, high automobile dependency, air and water pollution, and increased depletion of natural resources. Master planned development suggests itself as a possible palliative for the ills of low density and high travel. The following study examines the patterns and dynamics of movement in a selection of master planned estates in Australia. The study develops new approaches for assessing the containment of travel within planned development. Its key aim is to clarify and map the relationships between trip generation and urban form and structure. The initial conceptual framework of the report is developed in a review of literature related to urban form and travel behaviour. These concepts are tested empirically in a pilot study of suburban travel activity in master planned estates. A geographical information systems (GIS) methodology is used to determine regional journey-to-work patterns and travel containment rates. Factors that influence self-containment patterns are estimated with a regression model. The key research findings of the pilot study are: - There is a strong relation between urban structural form and patterns of trip generation; - The travel self-containment of Australian master planned estates is lower than the scholarly literature implies would occur if appropriate planning principles to achieve sustainable urban travel were followed; - Proximity to the central business district, income level and education status are positively correlated with travel containment; - Master planned estates depend more on local and regional centres for employment than on the central business district; - The service sector is the major employer in and around master planned estates. It tends to provide part-time and casual employment rather than full-time employment; - Travel self-containment is negative correlated with car dependency. Master planned estates with less car dependent residents, and with good access to public transport, appear to be more self-contained and, consequently, more sustainable than the norm. This research is a useful preliminary examination of travel self-containment in Australian master planned estates. It by no means exhausts the subject. In future research we hope to further assess sustainable travel patterns with more detailed spatial analysis.
Resumo:
The rising problems associated with construction such as decreasing quality and productivity, labour shortages, occupational safety, and inferior working conditions have opened the possibility of more revolutionary solutions within the industry. One prospective option is in the implementation of innovative technologies such as automation and robotics, which has the potential to improve the industry in terms of productivity, safety and quality. The construction work site could, theoretically, be contained in a safer environment, with more efficient execution of the work, greater consistency of the outcome and higher level of control over the production process. By identifying the barriers to construction automation and robotics implementation in construction, and investigating ways in which to overcome them, contributions could be made in terms of better understanding and facilitating, where relevant, greater use of these technologies in the construction industry so as to promote its efficiency. This research aims to ascertain and explain the barriers to construction automation and robotics implementation by exploring and establishing the relationship between characteristics of the construction industry and attributes of existing construction automation and robotics technologies to level of usage and implementation in three selected countries; Japan, Australia and Malaysia. These three countries were chosen as their construction industry characteristics provide contrast in terms of culture, gross domestic product, technology application, organisational structure and labour policies. This research uses a mixed method approach of gathering data, both quantitative and qualitative, by employing a questionnaire survey and an interview schedule; using a wide range of sample from management through to on-site users, working in a range of small (less than AUD0.2million) to large companies (more than AUD500million), and involved in a broad range of business types and construction sectors. Detailed quantitative (statistical) and qualitative (content) data analysis is performed to provide a set of descriptions, relationships, and differences. The statistical tests selected for use include cross-tabulations, bivariate and multivariate analysis for investigating possible relationships between variables; and Kruskal-Wallis and Mann Whitney U test of independent samples for hypothesis testing and inferring the research sample to the construction industry population. Findings and conclusions arising from the research work which include the ranking schemes produced for four key areas of, the construction attributes on level of usage; barrier variables; differing levels of usage between countries; and future trends, have established a number of potential areas that could impact the level of implementation both globally and for individual countries.
Resumo:
Coastal communities face the social, cultural and environmental challenges of managing rapid urban and industrial development, expanding tourism, and sensitive ecological environments. Enriching relationships between communities and universities through a structured engagement process can deliver integrated options towards sustainable coastal futures. This process draws on the embedded knowledge and values of all participants in the relationship, and offers a wide and affordable range of options for the future. This paper reviews lessons learnt from two projects with coastal communities, and discusses their application in a third. Queensland University of Technology has formed collaborative partnerships with industry in Queensland's Wide Bay-Burnett region to undertake a series of planning and design projects with community engagement as a central process. Senior students worked with community and produced design and planning drawings and reports outlining future options for project areas. A reflective approach has been adopted by the authors to assess the engagement process and outcomes of each project to learn lessons to apply in the next. Methods include surveying community and student participants regarding the value they place on process and outcomes respectively in planning for a sustainable future. All project participants surveyed have placed high importance on the process of engagement, emphasising the value of developing relationships between all project partners. The quality of these relationships is central to planning for sustainable futures, and while the outcomes the students deliver are valued, it is as much for their catalytic role as for their contents. Design and planning projects through community engagement have been found to develop innovative responses to the challenges faced by coastal communities seeking direction toward sustainable futures. The enrichment of engagement relationships and processes has an important influence on the quality of these design and planning responses.
Resumo:
This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.
Resumo:
The availability of innumerable intelligent building (IB) products, and the current dearth of inclusive building component selection methods suggest that decision makers might be confronted with the quandary of forming a particular combination of components to suit the needs of a specific IB project. Despite this problem, few empirical studies have so far been undertaken to analyse the selection of the IB systems, and to identify key selection criteria for major IB systems. This study is designed to fill these research gaps. Two surveys: a general survey and the analytic hierarchy process (AHP) survey are proposed to achieve these objectives. The first general survey aims to collect general views from IB experts and practitioners to identify the perceived critical selection criteria, while the AHP survey was conducted to prioritize and assign the important weightings for the perceived criteria in the general survey. Results generally suggest that each IB system was determined by a disparate set of selection criteria with different weightings. ‘Work efficiency’ is perceived to be most important core selection criterion for various IB systems, while ‘user comfort’, ‘safety’ and ‘cost effectiveness’ are also considered to be significant. Two sub-criteria, ‘reliability’ and ‘operating and maintenance costs’, are regarded as prime factors to be considered in selecting IB systems. The current study contributes to the industry and IB research in at least two aspects. First, it widens the understanding of the selection criteria, as well as their degree of importance, of the IB systems. It also adopts a multi-criteria AHP approach which is a new method to analyse and select the building systems in IB. Further research would investigate the inter-relationship amongst the selection criteria.
Resumo:
Pollutants originating with roof runoff can have a significant impact to urban stormwater quality. This signifies the importance of understanding pollutant processes on roof surfaces. Additionally, knowledge of pollutant processes on roof surfaces is important as roofs are used as the primary catchment surface for domestic rainwater harvesting. In recent years, rainwater harvesting has become one of the primary sustainable water management techniques to counteract the growing demand for potable water. Similar to all impervious services, pollutants associated with roof runoff undergo two primary processes: build-up and wash-off. The knowledge relating to these processes is limited. This paper presents outcomes of an in-depth research study into pollutant build-up and wash-off for roof surfaces. The knowledge will be important in order to develop appropriate strategies to safeguard rainwater users from possible health risks.
Resumo:
Many urban developments are implementing Water Sensitive Urban Design (WSUD) strategies to attenuate flows and decrease pollutant loads carried by stormwater runoff. A water quality monitoring project was undertaken at the residential development of ‘Coomera Waters’ on the Gold Coast in Queensland to assess the effectiveness of a bioretention swale, a constructed wetland and a bioretention basin in treating stormwater runoff before it enters protected Melaleuca wetlands. This paper compares the effectiveness of these WSUD devices in reducing flow frequency, peak flow, and stormwater volume leaving the WSUD systems. The pollutant loads reductions are also described and the concentrations of pollutants are compared to the trigger values derived from the ANZECC (2000) Guidelines.
Resumo:
An Australian manufacturer has recently developed an innovative group of cold-formed steel hollow flange sections, one of them is LiteSteel Beams (LSBs). The LSB sections are produced from thin and high strength steels by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They have a unique geometry consisting of rectangular hollow flanges and a relatively slender web. The LSB flexural members are subjected to lateral distortional buckling effects and hence their capacities are reduced for intermediate spans. The current design rules for lateral distortional buckling were developed based on the lower bound of numerical and experimental results. The effect of LSB section geometry was not considered although it could influence the lateral distortional buckling performance. Therefore an accurate finite element model of LSB flexural members was developed and validated using experimental and finite strip analysis results. It was then used to investigate the effect of LSB geometry. The extensive moment capacity data thus developed was used to develop improved design rules for LSBs with one of them considering the LSB geometry effects through a modified slenderness parameter. The use of the new design rules gave higher lateral distortional buckling capacities for LSB sections with intermediate slenderness. The new design rule is also able to accurately predict the lateral distortional buckling moment capacities of other hollow flange beams (HFBs).
Resumo:
In the future we will have a detailed ecological model of the whole planet with capabilities to explore and predict the consequences of alternative futures. However, such a planetary eco-model will take time to develop, time to populate with data, and time to validate - time the planet doesn't have. In the interim, we can model the major concentrations of energy use and pollution - our cities - and connect them to form a "talking cities network". Such a networked city model would be much quicker to build and validate. And the advantage of this approach is that it is safer and more effective for us to interfere with the operation of our cities than to tamper directly with the behaviour of natural systems. Essentially, it could be thought of as providing the planet with a nervous system and would empower us to better develop and manage sustainable cities.
Resumo:
The paper examines the decision by Australian Real Estate Trusts (A-REITs) to issue seasoned equity offerings from 2000 - 2008 and stock market reaction to the offerings using panel data and event study methodologies, respectively. The global financial crisis has resulted in freezing of the Australian bond markets, with several A-REITs left with seasoned equity issuance and asset sales as the only viable modes of raising additional capital. The findings review that leverage and operating risk are negative significant determinants of seasoned equity offerings; profitability and growth opportunities are positive significant determinants. Of the structure and type of properties held by the A-REIT, only stapled management structure and international operations are significant determinants. Type of properties held by A-REITs show inconsistent results. Similar to previous studies of seasoned equity offerings, we find a significant negative abnormal return associated with their announcement and no evidence of excessive leakage of information. Cross-sectional regressions show that the issued amount raised and leverage are significant factors affecting abnormal returns.
Resumo:
Vibration based damage identification methods examine the changes in primary modal parameters or quantities derived from modal parameters. As one method may have advantages over the other under some circumstances, a multi-criteria approach is proposed. Case studies are conducted separately on beam, plate and plate-on-beam structures. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on flexibility and strain energy changes before and after damage are obtained and used as the indices for the assessment of the state of structural health. Results show that the proposed multi-criteria method is effective in damage identification in these structures.
Resumo:
This chapter discusses digital storytelling as a methodology for participatory public history through a detailed reflection on an applied research project that integrated both public history and digital storytelling in the context of a new master-planned urban development: the Kelvin Grove Urban Village Sharing Stories project.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.