508 resultados para Porous Structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical investigation of the behaviour of fuel injection through a porous surface in an inlet-fuelled, radial-farming scramjet is presented. The performance of porous fuel injection is compared to discrete port hole injection at an equivalence ratio of φ ≈ 0.4 for both cases. The comparison is performed at a Mach 6.5 flow condition with a total specific enthalpy of 4.3 MJ/kg. The numerical results are compared to experiments performed in the T4 shock tunnel where available. The presented results demonstrate for the first time, that porous fuel injection has the potential to outperform port hole injectors in scramjet engines in terms of fuel-air mixing, ignition delays and achievable combustion efficiencies despite reduced fuel penetration heights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the experimental testing of oxygen compatible ceramic matrix composite porous injectors in a nominally two-dimensional hydrogen fuelled and oxygen enriched radical farming scramjet in the T4 shock tunnel facility. All experiments were performed at a dynamic pressure of 146 kPa, an equivalent flight Mach number of 9.7, a stagnation pressure and enthalpy of 40MPa and 4.3 MJ/kg respectively and at a fuelling condition that resulted in an average equivalence ratio of 0.472. Oxygen was pre-mixed with the fuel prior to injection to achieve enrichment percentages of approximately 13%, 15% and 17%. These levels ensured that the hydrogen-oxidiser mix injected into the engine always remained too fuel rich to sustain a flame without any additional mixing with the captured air. Addition of pre-mixed oxygen with the fuel was found to significantly alter the performance of the engine; enhancing both combustion and ignition and converting a previously observed limited combustion condition into one with sustained and noticeable combustion induced pressure rise. Increases in the enrichment percentage lead to further increases in combustion levels and acted to reduce ignition lengths within the engine. Suppressed combustion runs, where a nitrogen test gas was used, confirmed that the pressure rise observed in these experiments as attributed to the oxygen enrichment and not associated with the increased mass injected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium oxide films with trilayer structure grown on fluorine doped tin oxide substrate were prepared from one-step hydrothermal process. The trilayer structure consists of microflowers, nanorod array and compact nanoparticulates, which is expected to possess the merits of good light harvesting, a high electron transport rate, while avoiding the issues of electron shunting. The photovoltaic performance was comprehensively studied and a 60% enhancement in short circuit photocurrent density was found from microflowers contribution as a light scattering layer. This unique trilayer structure exhibits great potential application in future dye-sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsed wall jet has been used to simulate the gust front of a thunderstorm downburst. Flow visualization, wind speed and surface pressure measurements were obtained. The characteristics of the hypothesized ring vortex of a full-scale downburst were reproduced at a scale estimated to be 1:3000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alunite supergroup of minerals is a large hydroxy-sulfate mineral group, which has seen renewed interest following their discovery on Mars. Numerous reviews exist concerning nomenclature, formation, and natural occurrence of this mineral group. Sulfate minerals in general are widely studied and their vibrational spectra are well characterized. However, no specific review concerning alunite and jarosite spectroscopy and crystal structure has been forthcoming. This review focuses on the controversial aspects of the crystal structure and vibrational spectroscopy of jarosite and alunite minerals. Inconsistencies regarding band assignments especially in the 1000–400 cm−1 region plague these two mineral groups and result in different band assignments among the various spectroscopic studies. There are significant crystallographic and magnetic structure ambiguities with regards to ammonium and hydronium end-members, namely, the geometry these two ions assume in the structure and the fact that hydronium jarosite is a spin glass. It was also found that the synthetic causes for the super cell in plumbojarosite, minamiite, huangite, and walthierite are not known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been predicted that sea level will rise about 0.8 m by 2100. Consequently, seawater can intrude into the coastal aquifers and change the level of groundwater table. A raise in groundwater table due to seawater intrusion threats the coastal infrastructure such as road pavements. The mechanical properties of subgrade materials will change due to elevated rise of groundwater table, leading to pavement weakening and decreasing the subgrade strength and stiffness. This paper presents an assessment of the vulnerability of subgrade in coastal areas to change in groundwater table due to sea-level rise. A simple bathtub approach is applied for estimating the groundwater level changes according to sea-level rise. Then the effect of groundwater level changes on the soil water content (SWC) of a single column of fine-sand soil is simulated using MIKE SHE. The impact of an increase in moisture content on subgrade strength/stiffness is assessed for a number of scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluid–Structure Interaction (FSI) problem is significant in science and engineering, which leads to challenges for computational mechanics. The coupled model of Finite Element and Smoothed Particle Hydrodynamics (FE-SPH) is a robust technique for simulation of FSI problems. However, two important steps of neighbor searching and contact searching in the coupled FE-SPH model are extremely time-consuming. Point-In-Box (PIB) searching algorithm has been developed by Swegle to improve the efficiency of searching. However, it has a shortcoming that efficiency of searching can be significantly affected by the distribution of points (nodes in FEM and particles in SPH). In this paper, in order to improve the efficiency of searching, a novel Striped-PIB (S-PIB) searching algorithm is proposed to overcome the shortcoming of PIB algorithm that caused by points distribution, and the two time-consuming steps of neighbor searching and contact searching are integrated into one searching step. The accuracy and efficiency of the newly developed searching algorithm is studied on by efficiency test and FSI problems. It has been found that the newly developed model can significantly improve the computational efficiency and it is believed to be a powerful tool for the FSI analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipids are the key structural component of cell membranes, and recent advances in electrospray ionization mass spectrometry provide for the fast and efficient analysis of these compounds in biological extracts.1-3 The application of electrospray ionization tandem mass spectrometry (ESI-MS/MS) to phospholipid analysis has demonstrated several key advantages over the more traditional chromatographic methods, including speed and greater structural information.4 For example, the ESI-MS/MS spectrum of a typical phospholipidsparticularly in negative ion modesreadily identifies the carbon chain length and the degree of unsaturation of each of the fatty acids esterified to the parent molecule.5 A critical limitation of conventional ESI-MS/MS analysis, however, is the inability to uniquely identify the position of double bonds within the fatty acid chains. This is especially problematic given the importance of double bond position in determining the biological function of lipid classes.6 Previous attempts to identify double bond position in intact phospholipids using mass spectrometry employ either MS3 or offline chemical derivatization.7-11 The former method requires specialized instrumentation and is rarely applied, while the latter methods suffer from complications inherent in sample handling prior to analysis. In this communication we outline a novel on-line approach for the identification of double bond position in intact phospholipids. In our method, the double bond(s) present in unsaturated phospholipids are cleaved by ozonolysis within the ion source of a conventional ESI mass spectrometer to give two chemically induced fragment ions that may be used to unambiguously assign the position of the double bond. This is achieved by using oxygen as the electrospray nebulizing gas in combination with high electrospray voltages to initiate the formation of an ozoneproducing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the application of a statistical method for model structure selection of lift-drag and viscous damping components in ship manoeuvring models. The damping model is posed as a family of linear stochastic models, which is postulated based on previous work in the literature. Then a nested test of hypothesis problem is considered. The testing reduces to a recursive comparison of two competing models, for which optimal tests in the Neyman sense exist. The method yields a preferred model structure and its initial parameter estimates. Alternatively, the method can give a reduced set of likely models. Using simulated data we study how the selection method performs when there is both uncorrelated and correlated noise in the measurements. The first case is related to instrumentation noise, whereas the second case is related to spurious wave-induced motion often present during sea trials. We then consider the model structure selection of a modern high-speed trimaran ferry from full scale trial data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.