596 resultados para OCULAR-SURFACE DISORDERS
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.
Resumo:
Heavy-vehicle driving involves a challenging work environment and a high crash rate. We investigated the associations of sleepiness, sleep disorders, and work environment (including truck characteristics) with the risk of crashing between 2008 and 2011 in the Australian states of New South Wales and Western Australia. We conducted a case-control study of 530 heavy-vehicle drivers who had recently crashed and 517 heavy-vehicle drivers who had not. Drivers' crash histories, truck details, driving schedules, payment rates, sleep patterns, and measures of health were collected. Subjects wore a nasal flow monitor for 1 night to assess for obstructive sleep apnea. Driving schedules that included the period between midnight and 5:59 am were associated with increased likelihood of crashing (odds ratio = 3.42, 95% confidence interval: 2.04, 5.74), as were having an empty load (odds ratio = 2.61, 95% confidence interval: 1.72, 3.97) and being a less experienced driver (odds ratio = 3.25, 95% confidence interval: 2.37, 4.46). Not taking regular breaks and the lack of vehicle safety devices were also associated with increased crash risk. Despite the high prevalence of obstructive sleep apnea, it was not associated with the risk of a heavy-vehicle nonfatal, nonsevere crash. Scheduling of driving to avoid midnight-to-dawn driving and the use of more frequent rest breaks are likely to reduce the risk of heavy-vehicle nonfatal, nonsevere crashes by 2–3 times.
Resumo:
Provision of an individually responsive education requires a comprehensive understanding of the inner worlds of learners, such as their feelings and thoughts. However, this is difficult to achieve when learners, such as those with Autism Spectrum Disorders (ASD) and cognitive difficulties, have problems with communication. To address this issue, the current exploratory descriptive study sought the views of 133 Singaporean parents and teachers of school-age learners with ASD and cognitive difficulties regarding the inner experience of their children and students. The findings highlight the variety of abilities and difficulties found in how these learners experience their own mental states and understand those of others. These abilities and difficulties are characterized according to type of mental state and analysed in line with three qualia, those of experience, recursive awareness and understanding. The findings indicate that learners show a greater awareness of their own mental states compared to their ability to understand these same mental states in others. Educational implications are discussed.
Resumo:
Osteochondral grafts are common treatment options for joint focal defects due to their excellent functionality. However, the difficulty is matching the topography of host and graft(s) surfaces flush to one another. Incongruence could lead to disintegration particularly when the gap reaches subchondoral region. The aim of this study is therefore to investigate cell response to gap geometry when forming cartilage-cartilage bridge at the interface. The question is what would be the characteristics of such a gap if the cells could bridge across to fuse the edges? To answer this, osteochondral plugs devoid of host cells were prepared through enzymatic decellularization and artificial clefts of different sizes were created on the cartilage surface using laser ablation. High density pellets of heterologous chondrocytes were seeded on the defects and cultured with chondrogenic differentiation media for 35 days. The results showed that the behavior of chondrocytes was a function of gap topography. Depending on the distance of the edges two types of responses were generated. Resident cells surrounding distant edges demonstrated superficial attachment to one side whereas clefts of 150 to 250 µm width experienced cell migration and anchorage across the interface. The infiltration of chondrocytes into the gaps provided extra space for their proliferation and laying matrix; as the result faster filling of the initial void space was observed. On the other hand, distant and fit edges created an incomplete healing response due to the limited ability of differentiated chondrocytes to migrate and incorporate within the interface. It seems that the initial condition of the defects and the curvature profile of the adjacent edges were the prime determinants of the quality of repair; however, further studies to reveal the underlying mechanisms of cells adapting to and modifying the new environment would be of particular interest.
Resumo:
An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.
Resumo:
This paper presents a comparative study on the response of a buried tunnel to surface blast using the arbitrary Lagrangian-Eulerian (ALE) and smooth particle hydrodynamics (SPH) techniques. Since explosive tests with real physical models are extremely risky and expensive, the results of a centrifuge test were used to validate the numerical techniques. The numerical study shows that the ALE predictions were faster and closer to the experimental results than those from the SPH simulations which over predicted the strains. The findings of this research demonstrate the superiority of the ALE modelling techniques for the present study. They also provide a comprehensive understanding of the preferred ALE modelling techniques which can be used to investigate the surface blast response of underground tunnels.
Resumo:
Background There is a need for qualitative research to help develop case conceptualisations to guide the development of Metacognitive Therapy interventions for Eating Disorders. Method A qualitative study informed by grounded theory methodology was conducted involving open-ended interviews with 27 women aged 18–55 years, who were seeking or receiving treatment for a diagnosed ED. Results The categories identified in this study appeared to be consistent with a metacognitive model including constructs of a Cognitive Attentional Syndrome and metacognitive beliefs. These categories appear to be transdiagnostic, and the interaction between the categories is proposed to explain the maintenance of EDs. Conclusions The transdiagnostic model proposed may be useful to guide the development of future metacognitive therapy interventions for EDs with the hope that this will lead to improved outcomes for individuals with EDs.
Resumo:
"Principles of Addiction provides a solid understanding of the definitional and diagnostic differences between use, abuse, and disorder. It describes in great detail the characteristics of these syndromes and various etiological models. The book's three main sections examine the nature of addiction, including epidemiology, symptoms, and course; alcohol and drug use among adolescents and college students; and detailed descriptions of a wide variety of addictive behaviors and disorders, encompassing not only drugs and alcohol, but caffeine, food, gambling, exercise, sex, work, social networking, and many other areas. This volume is especially important in providing a basic introduction to the field as well as an in-depth review of our current understanding of the nature and process of addictive behaviors. Principles of Addiction is one of three volumes comprising the 2,500-page series, Comprehensive Addictive Behaviors and Disorders. This series provides the most complete collection of current knowledge on addictive behaviors and disorders to date. In short, it is the definitive reference work on addictions."--publisher website
Resumo:
"Biological Research on Addiction examines the neurobiological mechanisms of drug use and drug addiction, describing how the brain responds to addictive substances as well as how it is affected by drugs of abuse. The book's four main sections examine behavioral and molecular biology; neuroscience; genetics; and neuroimaging and neuropharmacology as they relate to the addictive process. This volume is especially effective in presenting current knowledge on the key neurobiological and genetic elements in an individual's susceptibility to drug dependence, as well as the processes by which some individuals proceed from casual drug use to drug dependence. Biological Research on Addiction is one of three volumes comprising the 2,500-page series, Comprehensive Addictive Behaviors and Disorders. This series provides the most complete collection of current knowledge on addictive behaviors and disorders to date. In short, it is the definitive reference work on addictions."--publisher website
Resumo:
"Interventions for Addiction examines a wide range of responses to addictive behaviors, including psychosocial treatments, pharmacological treatments, provision of health care to addicted individuals, prevention, and public policy issues. Its focus is on the practical application of information covered in the two previous volumes of the series, Comprehensive Addictive Behaviors and Disorders. Readers will find information on treatments beyond commonly used methods, including Internet-based and faith-based therapies, and criminal justice interventions. The volume features extensive coverage of pharmacotherapies for each of the major drugs of abuse-including disulfiram, buprenorphine, naltrexone, and others-as well as for behavioral addictions. In considering public policy, the book examines legislative efforts, price controls, and limits on advertising, as well as World Health Organization (WHO) efforts. Interventions for Addiction is one of three volumes comprising the 2,500-page series, Comprehensive Addictive Behaviors and Disorders. This series provides the most complete collection of current knowledge on addictive behaviors and disorders to date. In short, it is the definitive reference work on addictions."--publisher website
Resumo:
Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.
Resumo:
This project advances the knowledge of rail wear and crack formation due to rail/wheel contact in Australian heavy-haul railway lines. This comprehensive study utilised numerous techniques including: simulation using a twin-disk test-rig, scanning electron microscope particle analysis and finite element modeling for material failure prediction. Through this work, new material failure models have been developed which may be used to predict the lifetime and reliability of materials undergoing severe contact conditions.
Resumo:
This paper presents the response of pile foundations to ground shocks induced by surface explosion using fully coupled and non-linear dynamic computer simulation techniques together with different material models for the explosive, air, soil and pile. It uses the Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations. Blast wave propagation in soil, horizontal pile deformation and pile damage are presented to facilitate failure evaluation of piles. Effects of end restraint of pile head and the number and spacing of piles within a group on their blast response and potential failure are investigated. The techniques developed and applied in this paper and its findings provide valuable information on the blast response and failure evaluation of piles and will provide guidance in their future analysis and design.
Resumo:
Purpose: To investigate the diurnal variations in ocular wavefront aberrations over two consecutive days in young adult subjects. Materials and methods: Measurements of both lower-order (sphero-cylindrical refractive powers) and higher-order (3rd and 4th order aberration terms) ocular aberrations were collected for 30 young adult subjects at ten different times over two consecutive days using a Hartmann-Shack aberrometer. Fifteen subjects were myopic and 15 were emmetropic. Five sets of measurements were collected each day at approximately 3 hourly intervals, with the first measurement taken at ~9 am and the final measurement at ~9 pm. Results: Spherical equivalent refraction (p = 0.029) and spherical aberration (p = 0.043) were both found to undergo significant diurnal variation over the two measurement days. The spherical equivalent was typically found to be at a maximum (i.e. most hyperopic) at the morning measurement, with a small myopic shift of 0.37 ± 0.15 D observed over the course of the day. The mean spherical aberration of all subjects (0.038 ± 0.048 μm) was found to be positive during the day and gradually became more negative into the evening, with a mean amplitude of change of 0.036 ± 0.02 μm. None of the other considered sphero-cylindrical refractive power components or higher-order aberrations exhibited significant diurnal variation over the two days of the experiment (p>0.05). Except for the lower-order astigmatism at 90/180 deg (p = 0.040), there were no significant differences between myopes and emmetropes in the magnitude and timing of the observed diurnal variations (p>0.05). Conclusions: Significant diurnal variations in spherical equivalent and spherical aberration were consistently observed over two consecutive days of measurement. Research and clinical applications requiring precise refractive error and wavefront measurements should take these diurnal changes into account when interpreting wavefront data.
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).