360 resultados para MAGNETIC EXCHANGE INTERACTIONS
Resumo:
Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV–vis spectroscopies under pseudo-physiological conditions (Tris–HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA–BDM complex and the binding number were 5.14 × 105 L mol−1 and 1.0, respectively. Spectroscopic studies for the formation of BDM–BSA complex were interpreted with the use of multivariate curve resolution – alternating least squares (MCR–ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin – site I and ibuprofen – site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation–emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM–BSA complex, the BDM was replaced and the DXM–BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment.
Resumo:
For people with intellectual disabilities, there are significant barriers to inclusion in socially cooperative endeavors. This paper investigates the effectiveness of Stomp, a tangible user interface (TUI) designed to provide new participatory experiences for people with intellectual disability. Results from an observational study reveal the extent to which the Stomp system supports social and physical interaction. The tangible, spatial, and embodied qualities of Stomp result in an experience that does not rely on the acquisition of specific competencies before interaction and engagement can occur.
Resumo:
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.
Resumo:
A hippocampal-CA3 memory model was constructed with PGENESIS, a recently developed version of GENESIS that allows for distributed processing of a neural network simulation. A number of neural models of the human memory system have identified the CA3 region of the hippocampus as storing the declarative memory trace. However, computational models designed to assess the viability of the putative mechanisms of storage and retrieval have generally been too abstract to allow comparison with empirical data. Recent experimental evidence has shown that selective knock-out of NMDA receptors in the CA1 of mice leads to reduced stability of firing specificity in place cells. Here a similar reduction of stability of input specificity is demonstrated in a biologically plausible neural network model of the CA3 region, under conditions of Hebbian synaptic plasticity versus an absence of plasticity. The CA3 region is also commonly associated with seizure activity. Further simulations of the same model tested the response to continuously repeating versus randomized nonrepeating input patterns. Each paradigm delivered input of equal intensity and duration. Non-repeating input patterns elicited a greater pyramidal cell spike count. This suggests that repetitive versus non-repeating neocortical inpus has a quantitatively different effect on the hippocampus. This may be relevant to the production of independent epileptogenic zones and the process of encoding new memories.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.
Resumo:
This study investigated interactions of protein-cleaving enzymes (or proteases) that promote prostate cancer progression. It provides the first evidence of a novel regulatory network of protease activity at the surface of cells. The proteases kallikrein-related peptidases 4 and 14, and matrix metalloproteinases 3 and 9 are cleaved at the cell surface by the cell surface proteases hepsin and TMPRSS2. These cleavage events potentially regulate activation of downstream targets of kallikrein 4 and 14 such as cell surface signalling via the protease-activated receptors (PARs) and cell growth-promoting factors such as hepatocyte-growth factor.
Resumo:
This study has provided further understanding of the pathogenesis of EV71, one of the major etiological agents associated with significant mortality in Hand, Foot and Mouth disease. Elucidating the host-pathogen interaction and the mechanism that the virus uses to bypass host defence systems to establish infection will aid in the development of potential antiviral therapeutics against EV71.
Resumo:
Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.
Resumo:
This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.
Resumo:
The exchange of iron species from iron (III) chloride solutions with a strong acid cation resin has been investigated in relation to a variety of water and wastewater applications. A detailed equilibrium isotherm analysis was conducted wherein models such as Langmuir Vageler, Competitive Langmuir, Freundlich, Temkin, Dubinin Astakhov, Sips and Brouers-Sotolongo were applied to the experimental data. An important conclusion was that both the bottle-point method and solution normality used to generate the ion exchange equilibrium information influenced which sorption model fitted the isotherm profiles optimally. Invariably, the calculated value for the maximum loading of iron on strong acid cation resin was substantially higher than the value of 47.1 g/kg of resin which would occur if one Fe3+ ion exchanged for three “H+” sites on the resin surface. Consequently, it was suggested that above pH 1, various iron complexes sorbed to the resin in a manner which required less than 3 sites per iron moiety. Column trials suggested that the iron loading was 86.6 g/kg of resin when 1342 mg/L Fe (III) ions in water were flowed at 31.7 bed volumes per hour. Regeneration with 5 to 10 % HCl solutions reclaimed approximately 90 % of exchange sites.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.