549 resultados para Low Speed.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
Ramp metering is an effective motorway control tool beneficial for mainline traffic, but the long on-ramp queues created interfere with surface traffic profoundly. This study deals with the conflict between mainline benefits and thecosts of on-ramp and surface traffic. A novel local on-ramp queue management strategy with mainline speed recovery is proposed. Microscopic simulation is used to test the new strategy and compare it with other strategies. Simulation results reveal that the ramp metering with queue management strategy provides a good balance between the mainline and on-ramp performances.
Resumo:
This research is part of a major project with a stimulus that rose from the need to manage a large number of ageing bridges in low traffic volume roads (LTVR) in Australia. The project investigated, designed and consequently constructed, involved replacing an ageing super-structure of a 10m span bridge with a disused Flat-bed Rail Wagon (FRW). This research, therefore, is developed on the premises that the FRW can be adopted as the main structural system for the bridges in LTVR network. The main focus of this research is to present two alternate deck wearing systems (DWS) as part of the design of the FRW as road bridge deck conforming to AS5100 (2004). The bare FRW structural components were first examined for their adequacy (ultimate and serviceability) in resisting the critical loads specified in AS5100(2004). Two options of DWSs were evaluated and their effects on the FRW examined. The first option involved usage of timber DWS; the idea of this option was to use all the primary and secondary members of the FRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option involved usage of reinforced concrete DWS with only the primary members of the FRW sharing the AS5100 (2004) loading. This option inherently minimised the risk associated with any uncertainty of the secondary members to their structural adequacy. This thesis reports the design phases of both options with conclusions of the selection of the ideal option for better structural performance, ease of construction and cost. The comparison carried out here focuses on the distribution of the traffic load by the FRW as a superstructure. Advantages and disadvantages highlighting cost comparisons and ease of constructability of the two systems are also included.
Resumo:
The surface formation energies of four low-indexed surfaces, including (001), (100), (110) and (011), of tin dioxide (SnO2) terminated by nonmetals (H, N, O, F, Cl, Br, and I) have been studied with the frameworks of density functional theory. A strong dependence of relative surface stabilities on surface atoms has been presented based on the calculations. Several instructions, in particular the selection of specific precursors and morphology controlling agents, have been further illustrated as a guideline for experimentalists.
Resumo:
The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved – they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.
Resumo:
Invasion waves of cells play an important role in development, disease and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.
Resumo:
In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.
Resumo:
Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM
Resumo:
Aims Physical activity has been shown to increase adolescent self-esteem. The aim of this investigation was to assess adolescent perceptions of parental support for physical activity endeavours, and its relationship with self-esteem among high and low SES groups. Methods Perceptions of parental support, and Rosenberg’s self-esteem (1965) were derived from the Children’s Physical Activity Correlates questionnaire, with scores ranging from 1 (lowest) to 4 (highest). Independent sample t-tests were conducted and Levene’s test indicated homogenous group variance, while Pearson’s r was employed to assess relationships between perceptions of parental support, and self-esteem. Results Overall, 111 (89%) and 64 (55%) high and low SES participants had complete data and were included in the analysis. The high SES differed for self-esteem (M = 3.39, SE = .05) from the low SES group (M = 2.75, SE = .08), t (173) = 6.82, p < .05, with a medium effect size (ES) r = .46. The high SES group scored higher for perceptions of parental support (M = 2.95, SE = .06) than the low SES group (M = 2.71, SE = .07), t (173) = 2.58, p < .05, with a low ES r = .04. Self-esteem was significantly correlated with parental support in both high (r = .34) and low (r = .47) SES groups. Conclusion Results indicate that perceptions of parental support may be a stronger indicator of self-esteem for low, than for high SES adolescents. Future physical activity strategies to promote self-esteem should involve parents as active facilitators.
Resumo:
Aims Wellness assessments can determine adolescent lifestyle behaviors. A better understanding of wellness differences between high and low SES adolescents could assist policy makers to develop improved strategies to bridge the gap between these two groups. The aim of this investigation was to explore wellness differences between high and low SES adolescents. Methods In total, 241 (125 high and 116 low SES) adolescents completed the 5-Factor Wellness Inventory (5F-Wel). The 5F-Wel comprises 97 items contributing to 17 subscales, 5 dimensions, 4 contexts, total wellness, and a life satisfaction index, with scores ranging from 0-100. Independent sample t-tests were performed with Levene’s test of equality for variances, which checked the assumption of homogeneity of variances. Results Overall, 117 (94%) and 112 (97 %) high and low SES participants had complete data and were included in the analysis. The high SES group scored higher for total wellness (M = 81.09, SE = .61) than the low SES group (M = 75.73, SE = .99). This difference was significant t (186) = 4.635, p < .05, with a medium effect size r = .32. The high SES group scored higher on 23 of 27 scales (21 scales, p < .05), while the low SES group scored higher on the remaining 3 scales (all non-significant). Conclusion These results contribute empirical data to the body of literature, indicating a large wellness discrepancy between high and low SES youth. Deficient areas can be targeted by policymakers to assist in bridging the gap between these groups.
Resumo:
Modern trains with different axle configurations, speeds and loads are used in railway networks. As a result, one of the most important questions of the mangers involved in bridge managements systems (BMS) is how these changes affect the structural behavior of the critical components of the railway bridges. Although researchers have conducted, many investigations on the dynamic effects of the moving loads on bridges, the influence of the changes in the speed of the train on the demand by capacity ratios of the different critical components of the bridge have not yet been properly studied. This study is important, because different components with different capacities and roles for carrying loads in the structure may be affected differently. To investigate the above phenomenon in this research, a structural model of a simply supported bridge is developed. It will be verified that the dynamic behavior of this bridge is similar to a group of railway bridges in Australia. Demand by capacity ratios of the critical components of the bridge, when it is subjected to a train load with different speeds will be calculated. The results show that the effect of increase or decrease of speed should not be underestimated. The outcome is very significant as it is contrary to what is currently expected, i.e. by reducing the speed of the train, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load.
Resumo:
The positive relationship between speed and crash risk and severity is robust and well-established. While excessive speeding is typically regarded by the public as a common contributing factor in road crashes, speeding remains a common traffic infringement and an arguably socially acceptable behaviour, particularly at low levels over the speed limit. This suggests that other factors potentially contribute to this disparity between crash perceptions and actual behaviours. Previous work has described associations between perceptions of the legitimacy of speed enforcement, attitudes, and how they relate to the likelihood of speeding. This study sought to more closely examine the nature of the relationships between these variables. In total, 293 Queensland drivers participated in a study that examined how demographics, personality variables, attitudes, and perceptions of the legitimacy of enforcement contributed to drivers’ self-reported likelihood of speeding. Results suggested that positive attitudes towards speeding had the greatest impact on likelihood of speeding behaviours. Being younger and higher levels of the personality trait of extraversion were also associated with greater levels of self-reported likelihood of speeding. Attitudes were found to mediate the relationship between perceived legitimacy of speed enforcement and self-reported likelihood of speeding. A subgroup analysis of participants with positive and negative attitudes towards speeding revealed that a differential set of variables were predictive of self-reported likelihood of speeding for the two subgroups. This highlights the potential importance of attitudes in understanding the influence of perceptions of legitimacy of speed enforcement on speeding behaviour, and the need for targeted rather than a ‘one size fits all’ approach to changing attitudes and ultimately behaviour. The findings of the current study help to further understand why some drivers continue to speed.
Resumo:
The first fiber Bragg grating (FBG) accelerometer using direct transverse forces is demonstrated by fixing the FBG by its two ends and placing a transversely moving inertial object at its middle. It is very sensitive because a lightly stretched FBG is more sensitive to transverse forces than axial forces. Its resonant frequency and static sensitivity are analyzed by the classic spring-mass theory, assuming the axial force changes little. The experiments show that the theory can be modified for cases where the assumption does not hold. The resonant frequency can be modified by a linear relationship experimentally achieved, and the static sensitivity by an alternative method proposed. The principles of the over-range protection and low cross axial sensitivity are achieved by limiting the movement of the FBG and were validated experimentally. The sensitivities 1.333 and 0.634 nm/g were experimentally achieved by 5.29 and 2.83 gram inertial objects at 10 Hz from 0.1 to 0.4 g (g = 9.8 m/s 2), respectively, and their resonant frequencies were around 25 Hz. Their theoretical static sensitivities and resonant frequencies found by the modifications are 1.188 nm/g and 26.81 Hz for the 5.29 gram one and 0.784 nm/g and 29.04 Hz for the 2.83 gram one, respectively.
Resumo:
This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.
Resumo:
The existing literature shows driving speed significantly affects levels of safety, emissions, and stress in driving. In addition, drivers who feel tense when driving have been found to drive more slowly than others. These findings were mostly obtained from crash data analyses or field studies, and less is known regarding driver perceptions of the extent to which reducing their driving speed would improve road safety, reduce their car’s emissions, and reduce stress and road rage. This paper uses ordered probit regression models to analyse responses from 3538 Queensland drivers who completed an online RACQ survey. Drivers most strongly agreed that reducing their driving speed would improve road safety, less strongly agreed that reducing their driving speed would reduce their car’s emissions and least strongly agreed that reducing their driving speed would reduce stress and road rage. Younger drivers less strongly agreed that these benefits would occur than older drivers. Drivers of automatic cars and those who are bicycle commuters agreed more to these benefits than other drivers. Female drivers agreed more strongly than males on improving safety and reducing stress and road rage. Type of fuel used, engine size, driving experience, and distance driven per week were also found to be associated with driver perceptions, although these were not found to be significant in all of the regression models. The findings from this study may help in developing targeted training or educational measures to improve drivers’ willingness to reduce their driving speed.