476 resultados para Jacobian arithmetic, genus 2
Resumo:
Vibrational spectroscopy has been used to characterise the mineral creaseyite Cu2Pb2(Fe,Al)2(Si5O17)·6H2O. The mineral is found in the oxidised zone of base metal deposits and interestingly is associated with copper silicate minerals including ajoite, kinoite, chrysocolla as well as wulfenite, willemite, mimetite and wickenburgite. Creaseyite is a mineral with zeolitic properties. A Raman band at 998 cm−1 is assigned to the SiO stretching vibration of SiO3 units. The Raman band at 1071 cm−1 is assigned to the SiO stretching vibrations of the Si2O5 units. Raman bands are found at 2750, 2902, 3162, 3470 and 3525 cm−1. The band at 3525 cm−1 is attributed to zeolitic water. Other bands are assigned to water coordinated to the metal cations. Vibrational spectroscopy enables aspects of the molecular structure of creaseyite to be determined.
Resumo:
This Guide is designed to assist workers better understand the and negotiate the complex interplay of ethical, legal and organisational considerations in their practice. The goal is to provide frontline workers and managers with information, questions and principles which promote good youth AOD practice. Legal information provided relates to Queensland, Australia.
Resumo:
To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.
Resumo:
In the last decade or so, we have witnessed the growth of web 2.0 technology and social networking platforms, and their rapid rise in popularity as methods of social interaction and communication. Yet, platforms such as Facebook and Twitter are not just online social phenomena, but can impact on the way the law and courts operate. This article highlights the issues that legal practitioners and courts need to be aware of in engaging with this technology, and suggests possible ways forward.
Resumo:
In TSPD Pty Ltd v Resortrez Pty Ltd [2008] QSC 001 Fryberg J made an order permitting the applicant to inspect and copy documents which had been produced to the court under a subpoena, but had remained in the registry. Though not essential to the decision the judgment contains some interesting discussion about the construction of r 242 of the Uniform Civil Procedure Rules 1999 (Qld) (UCPR).
Resumo:
Building Web 2.0 sites does not necessarily ensure the success of the site. We aim to better understand what improves the success of a site by drawing insight from biologically inspired design patterns. Web 2.0 sites provide a mechanism for human interaction enabling powerful intercommunication between massive volumes of users. Early Web 2.0 site providers that were previously dominant are being succeeded by newer sites providing innovative social interaction mechanisms. Understanding what site traits contribute to this success drives research into Web sites mechanics using models to describe the associated social networking behaviour. Some of these models attempt to show how the volume of users provides a self-organising and self-contextualisation of content. One model describing coordinated environments is called stigmergy, a term originally describing coordinated insect behavior. This paper explores how exploiting stigmergy can provide a valuable mechanism for identifying and analysing online user behavior specifically when considering that user freedom of choice is restricted by the provided web site functionality. This will aid our building better collaborative Web sites improving the collaborative processes.
Resumo:
The mineral svanbergite SrAl 3(PO 4,SO 4) 2(OH) 6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites and has been characterised by vibrational spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of svanbergite, which were then associated with the structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Comparison of the hydrogen bond distances and the calculated hydrogen bond distances from the structure models indicates that hydrogen bonding in svanbergite occurs between the two OH units rather than OH to SO42- units.