391 resultados para Interactive Techniques
Resumo:
Circos plots are graphical outputs that display three dimensional chromosomal interactions and fusion transcripts. However, the Circos plot tool is not an interactive visualization tool, but rather a figure generator. For example, it does not enable data to be added dynamically, nor does it provide information for specific data points interactively. Recently, an R-based Circos tool (RCircos) has been developed to integrate Circos to R, but similarly, Rcircos can only be used to generate plots. Thus, we have developed a Circos plot tool (J-Circos) that is an interactive visualization tool that can plot Circos figures, as well as being able to dynamically add data to the figure, and providing information for specific data points using mouse hover display and zoom in/out functions. J-Circos uses the Java computer language to enable it to be used on most operating systems (Windows, MacOS, Linux). Users can input data into JCircos using flat data formats, as well as from the GUI. J-Circos will enable biologists to better study more complex chromosomal interactions and fusion transcripts that are otherwise difficult to visualize from next-generation sequencing data.
Understanding the mechanisms of graft union formation in solanaceae plants using in vitro techniques
Resumo:
The purpose of this research was to conduct a pilot study of a prototype interactive music release format which sought to investigate the readiness of audiences to interact with an interactive alternative to a fixed recorded work. A prototype music interface was created for testing. The prototype was then tested on a sample of users to understand what factors might be critical to audience engagement. The research further investigated the potential implications of the interactive release format on musicians' creative process.
Resumo:
Bat researchers currently use a variety of techniques that transform echolocation calls into audible frequencies and allow the spectral content of a signal to be viewed and analyzed. All techniques have limitations and an understanding of how each works and the effect on the signal being analyzed are vital for correct interpretation. The 3 most commonly used techniques for transforming frequencies of a call are heterodyne, frequency division, and time expansion. Three techniques for viewing spectral content of a signal are zero-crossing, Fourier analysis, and instantaneous frequency analysis. It is important for bat researchers to be familiar with the advantages and disadvantages of each technique.
Resumo:
The Distributed Network Protocol v3.0 (DNP3) is one of the most widely used protocols, to control national infrastructure. Widely used interactive packet manipulation tools, such as Scapy, have not yet been augmented to parse and create DNP3 frames (Biondi 2014). In this paper we extend Scapy to include DNP3, thus allowing us to perform attacks on DNP3 in real-time. Our contribution builds on East et al. (2009), who proposed a range of possible attacks on DNP3. We implement several of these attacks to validate our DNP3 extension to Scapy, then executed the attacks on real world equipment. We present our results, showing that many of these theoretical attacks would be unsuccessful in an Ethernet-based network.
Resumo:
Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of pore-space morphology can be inferred from NMR diffusion-diffraction plots or the time-dependence of the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted diffusion propagator, which describes the distribution of diffusing particles for a given starting position and diffusion time. We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the restricted diffusion propagator connecting points A and B in time t is proportional to the number of distinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries, the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for periodic systems. Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial techniques; and MTM, to the Fokker-Planck master equation. The relationship between LPC, MTM and other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion propagators. Initial tests indicate that their computational performance is comparable to that of finite element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no analytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous materials and model biological tissues.
Resumo:
Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.