428 resultados para Computational Identification
Resumo:
This article considers the increased identification of special educational needs in Australia’s largest education system from the perspectives of senior public servants, regional directors, principals, school counsellors, classroom teachers, support class teachers, learning support teachers and teaching assistants (n = 30). While their perceptions of an increase generally align with the story told by official statistics, participants’ narratives reveal that school-based identification of special educational needs is neither art nor science. This research finds that rather than an objective indication of the number and nature of children with SEN, official statistics may be more appropriately viewed as a product of funding eligibility and the assumptions of the adults who teach, refer and assess children who experience difficulties in school and with learning.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.
Superstars as drivers of organizational identification : empirical findings from professional soccer
Resumo:
This paper examines the effect of superstars on external stakeholders’ organizational identification through the lens of sport. Drawing on social identity theory and the concept of organizational identification, as well as on role model theories and superstar economics, several hypotheses are developed regarding the influence of soccer stars on their fans’ degree of team identification. Using a proprietary data set that combines archival data on professional German soccer players and clubs with survey data on more than 1,400 soccer fans, this study finds evidence for a positive effect of superstar characteristics and role model perception. Moreover, it is found that players who qualify for the definition of a superstar are more important to fans of established teams than to fans of unsuccessful teams. The player's club tenure, however, seems to have no influence on fans’ team identification. It is further argued that the effect of soccer stars on their fans is comparable to that of executives on external stakeholders, and hence, the results are applied to the business domain. The results of this study contribute to existing research by extending the list of personnel-related determinants of organizational identification.
Resumo:
This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.
Resumo:
In this chapter, we draw out the relevant themes from a range of critical scholarship from the small body of digital media and software studies work that has focused on the politics of Twitter data and the sociotechnical means by which access is regulated. We highlight in particular the contested relationships between social media research (in both academic and non-academic contexts) and the data wholesale, retail, and analytics industries that feed on them. In the second major section of the chapter we discuss in detail the pragmatic edge of these politics in terms of what kinds of scientific research is and is not possible in the current political economy of Twitter data access. Finally, at the end of the chapter we return to the much broader implications of these issues for the politics of knowledge, demonstrating how the apparently microscopic level of how the Twitter API mediates access to Twitter data actually inscribes and influences the macro level of the global political economy of science itself, through re-inscribing institutional and traditional disciplinary privilege We conclude with some speculations about future developments in data rights and data philanthropy that may at least mitigate some of these negative impacts.
Resumo:
Background: Hot air ballooning incidents are relatively rare, however, when they do occur they are likely to result in a fatality or serious injury. Human error is commonly attributed as the cause of hot air ballooning incidents; however, error in itself is not an explanation for safety failures. This research aims to identify, and establish the relative importance of factors contributing towards hot air ballooning incidents. Methods: Twenty-two Australian Ballooning Federation (ABF) incident reports were thematically coded using a bottom up approach to identify causal factors. Subsequently, 69 balloonists (mean 19.51 years’ experience) participated in a survey to identify additional causal factors and rate (out of seven) the perceived frequency and potential impact to ballooning operations of each of the previously identified causal factors. Perceived associated risk was calculated by multiplying mean perceived frequency and impact ratings. Results: Incident report coding identified 54 causal factors within nine higher level areas: Attributes, Crew resource management, Equipment, Errors, Instructors, Organisational, Physical Environment, Regulatory body and Violations. Overall, ‘weather’, ‘inexperience’ and ‘poor/inappropriate decisions’ were rated as having greatest perceived associated risk. Discussion: Although errors were nominated as a prominent cause of hot air ballooning incidents, physical environment and personal attributes are also particularly important for safe hot air ballooning operations. In identifying a range of causal factors the areas of weakness surrounding ballooning operations have been defined; it is hoped that targeted safety and training strategies can now be put into place removing these contributing factors and reducing the chance of pilot error.
Resumo:
Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.
Resumo:
A new technique is presented for automatically identifying the phase connection of domestic customers. Voltage information from a reference three phase house is correlated with voltage information from other customer electricity meters on the same network to determine the highest probability phase connection. The techniques are purely based upon a time series of electrical voltage measurements taken by the household smart meters and no additional equipment is required. The method is demonstrated using real smart meter datasets to correctly identify the phase connections of 75 consumers on a low voltage distribution feeder.
Resumo:
Samples of marble from Chillagoe, North Queensland have been analyzed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Chemical analyses provide evidence for the presence of minerals other than limestone and calcite in the marble, including silicate minerals. Some of these analyses correspond to silicate minerals. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of allanite from the Arizona State University data base (RRUFF) data base. The combination of SEM with EDS and Raman spectroscopy enables the characterization of the mineral allanite in the Chillagoe marble.
Resumo:
Computational epigenetics is a new area of research focused on exploring how DNA methylation patterns affect transcription factor binding that affect gene expression patterns. The aim of this study was to produce a new protocol for the detection of DNA methylation patterns using computational analysis which can be further confirmed by bisulfite PCR with serial pyrosequencing. The upstream regulatory element and pre-initiation complex relative to CpG islets within the methylenetetrahydrofolate reductase gene were determined via computational analysis and online databases. The 1,104 bp long CpG island located near to or at the alternative promoter site of methylenetetrahydrofolate reductase gene was identified. The CpG plot indicated that CpG islets A and B, within the island, contained 62 and 75 % GC content CpG ratios of 0.70 and 0.80–0.95, respectively. Further exploration of the CpG islets A and B indicates that the transcription start sites were GGC which were absent from the TATA boxes. In addition, although six PROSITE motifs were identified in CpG B, no motifs were detected in CpG A. A number of cis-regulatory elements were found in different regions within the CpGs A and B. Transcription factors were predicted to bind to CpGs A and B with varying affinities depending on the DNA methylation status. In addition, transcription factor binding may influence the expression patterns of the methylenetetrahydrofolate reductase gene by recruiting chromatin condensation inducing factors. These results have significant implications for the understanding of the architecture of transcription factor binding at CpG islets as well as DNA methylation patterns that affect chromatin structure.
Resumo:
Summary 1. Acoustic methods are used increasingly to survey and monitor bat populations. However, the use of acoustic methods at continental scales can be hampered by the lack of standardized and objective methods to identify all species recorded. This makes comparable continent-wide monitoring difficult, impeding progress towards developing biodiversity indicators, transboundary conservation programmes and monitoring species distribution changes. 2. Here we developed a continental-scale classifier for acoustic identification of bats, which can be used throughout Europe to ensure objective, consistent and comparable species identifications. We selected 1350 full-spectrum reference calls from a set of 15 858 calls of 34 European species, from EchoBank, a global echolocation call library. We assessed 24 call parameters to evaluate how well they distinguish between species and used the 12 most useful to train a hierarchy of ensembles of artificial neural networks to distinguish the echolocation calls of these bat species. 3. Calls are first classified to one of five call-type groups, with a median accuracy of 97·6%. The median species-level classification accuracy is 83·7%, providing robust classification for most European species, and an estimate of classification error for each species. 4. These classifiers were packaged into an online tool, iBatsID, which is freely available, enabling anyone to classify European calls in an objective and consistent way, allowing standardized acoustic identification across the continent. 5. Synthesis and applications. iBatsID is the first freely available and easily accessible continental- scale bat call classifier, providing the basis for standardized, continental acoustic bat monitoring in Europe. This method can provide key information to managers and conservation planners on distribution changes and changes in bat species activity through time.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.