369 resultados para mathematical parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we discuss the development of a mathematical model to predict the shift in gas composition observed over time from a producing CSG (coal seam gas) well, and investigate the effect that physical properties of the coal seam have on gas production. A detailed (local) one-dimensional, two-scale mathematical model of a coal seam has been developed. The model describes the competitive adsorption and desorption of three gas species (CH4, CO2 and N2) within a microscopic, porous coal matrix structure. The (diffusive) flux of these gases between the coal matrices (microscale) and a cleat network (macroscale) is accounted for in the model. The cleat network is modelled as a one-dimensional, volume averaged, porous domain that extends radially from a central well. Diffusive and advective transport of the gases occurs within the cleat network, which also contains liquid water that can be advectively transported. The water and gas phases are assumed to be immiscible. The driving force for the advection in the gas and liquid phases is taken to be a pressure gradient with capillarity also accounted for. In addition, the relative permeabilities of the water and gas phases are considered as functions of the degree of water saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective cell spreading is frequently observed in development, tissue repair and disease progression. Mathematical modelling used in conjunction with experimental investigation can provide key insights into the mechanisms driving the spread of cell populations. In this study, we investigated how experimental and modelling frameworks can be used to identify several key features underlying collective cell spreading. In particular, we were able to independently quantify the roles of cell motility and cell proliferation in a spreading cell population, and investigate how these roles are influenced by factors such as the initial cell density, type of cell population and the assay geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims The aim of the study was to evaluate the significance of total bilirubin, aspartate transaminase (AST), alanine transaminase and gamma-glutamyltransferase (GGT) for predicting outcome in sepsis-associated cholestasis. Methods: A retrospective cohort review of the hospital records was performed in 181 neonates admitted to the Neonatal Care Unit. A comparison was performed between subjects with low and high liver values based on cut-off values from ROC analysis. We defined poor prognosis to be when a subject had prolonged cholestasis of more than 3.5 months, developed severe sepsis, septic shock or had a fatal outcome. Results: The majority of the subjects were male (56%), preterm (56%) and had early onset sepsis (73%). The poor prognosis group had lower initial values of GGT compared with the good prognosis group (P = 0.003). Serum GGT (cut-off value of 85.5 U/L) and AST (cut-off value of 51 U/L) showed significant correlation with the outcome following multivariate analysis. The odds ratio (OR) of low GGT and high AST were OR 4.3 (95% CI:1.6 to11.8) and OR 2.9 (95% CI:1.1 to 8), respectively, for poor prognosis. In subjects with normal AST values, those with low GGT value had relative risk of 2.52 (95% CI:1.4 to 3.5) for poorer prognosis compared with those with normal or high GGT. Conclusion: Serum GGT and AST values can be used to predict the prognosis of patients with sepsis-associated cholestasis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics has been perceived as the core area of learning in most educational systems around the world including Sri Lanka. Unfortunately, it is clearly visible that a majority of Sri Lankan students are failing in their basic mathematics when the recent grade five scholarship examination and ordinary level exam marks are analysed. According to Department of Examinations Sri Lanka , on average, over 88 percent of the students are failing in the grade 5 scholarship examinations where mathematics plays a huge role while about 50 percent of the students fail in there ordinary level mathematics examination. Poor or lack of basic mathematics skills has been identified as the root cause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated differences and associations in performance in number processing and executive function for children attending primary school in a large Australian metropolitan city. In a cross-sectional study, performance of 25 children in the first full-time year of school, (Prep; mean age = 5.5 years) and 21 children in Year 3 (mean age = 8.5 years) completed three number processing tasks and three executive function tasks. Year 3 children consistently outperformed the Prep year children on measures of accuracy and reaction time, on the tasks of number comparison, calculation, shifting, and inhibition but not on number line estimation. The components of executive function (shifting, inhibition, and working memory) showed different patterns of correlation to performance on number processing tasks across the early years of school. Findings could be used to enhance teachers’ understanding about the role of the cognitive processes employed by children in numeracy learning, and so inform teachers’ classroom practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermittent microwave convective drying (IMCD) is an advanced technology that improves both energy efficiency and food quality in drying. Modelling of IMCD is essential to understand the physics of this advanced drying process and to optimize the microwave power level and intermittency during drying. However, there is still a lack of modelling studies dedicated to IMCD. In this study, a mathematical model for IMCD was developed and validated with experimental data. The model showed that the interior temperature of the material was higher than the surface in IMCD, and that the temperatures fluctuated and redistributed due to the intermittency of the microwave power. This redistribution of temperature could significantly contribute to the improvement of product quality during IMCD. Limitations when using Lambert's Law for microwave heat generation were identified and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we consider subordinated processes controlled by a family of subordinators which consist of a power function of a time variable and a negative power function of an α-stable random variable. The effect of parameters in the subordinators on the subordinated process is discussed. By suitable variable substitutions and the Laplace transform technique, the corresponding fractional Fokker–Planck-type equations are derived. We also compute their mean square displacements in a free force field. By choosing suitable ranges of parameters, the resulting subordinated processes may be subdiffusive, normal diffusive or superdiffusive

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drivers behave in different ways, and these different behaviors are a cause of traffic disturbances. A key objective for simulation tools is to correctly reproduce this variability, in particular for car-following models. From data collection to the sampling of realistic behaviors, a chain of key issues must be addressed. This paper discusses data filtering, robustness of calibration, correlation between parameters, and sampling techniques of acceleration-time continuous car-following models. The robustness of calibration is systematically investigated with an objective function that allows confidence regions around the minimum to be obtained. Then, the correlation between sets of calibrated parameters and the validity of the joint distributions sampling techniques are discussed. This paper confirms the need for adapted calibration and sampling techniques to obtain realistic sets of car-following parameters, which can be used later for simulation purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic cigarette-generated mainstream aerosols were characterized in terms of particle number concentrations and size distributions through a Condensation Particle Counter and a Fast Mobility Particle Sizer spectrometer, respectively. A thermodilution system was also used to properly sample and dilute the mainstream aerosol. Different types of electronic cigarettes, liquid flavors, liquid nicotine contents, as well as different puffing times were tested. Conventional tobacco cigarettes were also investigated. The total particle number concentration peak (for 2-s puff), averaged across the different electronic cigarette types and liquids, was measured equal to 4.39 ± 0.42 × 109 part. cm−3, then comparable to the conventional cigarette one (3.14 ± 0.61 × 109 part. cm−3). Puffing times and nicotine contents were found to influence the particle concentration, whereas no significant differences were recognized in terms of flavors and types of cigarettes used. Particle number distribution modes of the electronic cigarette-generated aerosol were in the 120–165 nm range, then similar to the conventional cigarette one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper is two-dimensional computational modelling of water flow in unsaturated soils consisting of weakly conductive disconnected inclusions embedded in a highly conductive connected matrix. When the inclusions are small, a two-scale Richards’ equation-based model has been proposed in the literature taking the form of an equation with effective parameters governing the macroscopic flow coupled with a microscopic equation, defined at each point in the macroscopic domain, governing the flow in the inclusions. This paper is devoted to a number of advances in the numerical implementation of this model. Namely, by treating the micro-scale as a two-dimensional problem, our solution approach based on a control volume finite element method can be applied to irregular inclusion geometries, and, if necessary, modified to account for additional phenomena (e.g. imposing the macroscopic gradient on the micro-scale via a linear approximation of the macroscopic variable along the microscopic boundary). This is achieved with the help of an exponential integrator for advancing the solution in time. This time integration method completely avoids generation of the Jacobian matrix of the system and hence eases the computation when solving the two-scale model in a completely coupled manner. Numerical simulations are presented for a two-dimensional infiltration problem.