504 resultados para fungus growth
Resumo:
Aspergillus terreus is successfully used for industrial production of itaconic acid. The acid is formed from cis-aconitate, an intermediate of the tricarboxylic (TCA) cycle, by catalytic action of cis-aconitate decarboxylase. It could be assumed that strong anaplerotic reactions that replenish the pool of the TCA cycle intermediates would enhance the synthesis and excretion rate of itaconic acid. In the phylogenetic close relative Aspergillus niger, upregulated metabolic flux through glycolysis has been described that acted as a strong anaplerotic reaction. Deregulated glycolytic flux was caused by posttranslational modification of 6-phosphofructo-1-kinase (PFK1) that resulted in formation of a highly active, citrate inhibition-resistant shorter form of the enzyme. In order to avoid complex posttranslational modification, the native A. niger pfkA gene has been modified to encode for an active shorter PFK1 fragment. By the insertion of the modified A. niger pfkA genes into the A. terreus strain, increased specific productivities of itaconic acid and final yields were documented by transformants in respect to the parental strain. On the other hand, growth rate of all transformants remained suppressed which is due to the low initial pH value of the medium, one of the prerequisites for the accumulation of itaconic acid by A. terreus mycelium. © 2010 Springer-Verlag.
Resumo:
Mutations of K-ras have been found in 30-60% of colorectal carcinomas and are believed to be associated with tumor initiation, tumor progression and metastasis formation. Therefore, silencing of mutant K-ras expression has become an attractive therapeutic strategy for colorectal cancer treatment. The aim of our study was to investigate the effect of microRNA (miRNA) molecules directed against K-ras (miRNA-K-ras) on K-ras expression level and the growth of colorectal carcinoma cell line LoVo in vitro and in vivo. In addition, we evaluated electroporation as a gene delivery method for transfection of LoVo cells and tumors with plasmid DNA encoding miRNA-K-ras (pmiRNA-K-ras). Results of our study indicated that miRNAs targeting K-ras efficiently reduced K-ras expression and cell survival after in vitro electrotransfection of LoVo cells with pmiRNA-K-ras. In vivo, electroporation has proven to be a simple and efficient delivery method for local administration of pmiRNA-K-ras molecules into LoVo tumors. This therapy shows pronounced antitumor effectiveness and has no side effects. The obtained results demonstrate that electrogene therapy with miRNA-K-ras molecules can be potential therapeutic strategy for treatment of colorectal cancers harboring K-ras mutations. © 2010 Nature Publishing Group All rights reserved.
Resumo:
Carbon nanorods and graphene-like nanosheets are catalytically synthesized in a hot filament chemical vapor deposition system with and without plasma enhancement, with gold used as a catalyst. The morphological and structural properties of the carbon nanorods and nanosheets are investigated by field-emission scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. It is found that carbon nanorods are formed when a CH4 + H2 + N2 plasma is present while carbon nanosheets are formed in a methane environment without a plasma. The formation of carbon nanorods and carbon nanosheets are analyzed. The results suggest that the formation of carbon nanorods is primarily a precipitation process while the formation of carbon nanosheets is a complex process involving surface-catalysis, surface diffusion and precipitation influenced by the Gibbs–Thomson effect. The electron field emission properties of the carbon nanorods and graphene-like nanosheets are measured under high-vacuum; it is found that the carbon nanosheets have a lower field emission turn-on than the carbon nanorods. These results are important to improve the understanding of formation mechanisms of carbon nanomaterials and contribute to eventual applications of these structures in nanodevices.
Resumo:
A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.
Resumo:
Three case studies are presented to show low-temperature plasma-specific effects in the solution of (i) effective control of nucleation and growth; (ii) environmental friendliness; and (iii) energy efficiency critical issues in semiconducting nanowire growth. The first case (related to (i) and (iii)) shows that in catalytic growth of Si nanowires, plasma-specific effects lead to a substantial increase in growth rates, decrease of the minimum nanowire thickness, and much faster nanowire nucleation at the same growth temperatures. For nucleation and growth of nanowires of the same thickness, much lower temperatures are required. In the second example (related to (ii)), we produce Si nanowire networks with controllable nanowire thickness, length, and area density without any catalyst or external supply of Si building material. This case is an environmentally-friendly alternative to the commonly used Si microfabrication based on a highly-toxic silane precursor gas. The third example is related to (iii) and demonstrates that ZnO nanowires can be synthesized in plasma-enhanced CVD at significantly lower process temperatures than in similar neutral gas-based processes and without compromising structural quality and performance of the nanowires. Our results are relevant to the development of next-generation nanoelectronic, optoelectronic, energy conversion and sensing devices based on semiconducting nanowires.
Resumo:
Controlled self-organized growth of vertically aligned carbon nanocone arrays in a radio frequency inductively coupled plasma-based process is studied. The experiments have demonstrated that the gaps between the nanocones, density of the nanocone array, and the shape of the nanocones can be effectively controlled by the process parameters such as gas composition (hydrogen content) and electrical bias applied to the substrate. Optical measurements have demonstrated lower reflectance of the nanocone array as compared with a bare Si wafer, thus evidencing their potential for the use in optical devices. The nanocone formation mechanism is explained in terms of redistribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array and passivation of carbon in narrow gaps where the access of plasma ions is hindered. Extensive numerical simulations were used to support the proposed growth mechanism.
Resumo:
Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.
Resumo:
Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.
Resumo:
We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.
Resumo:
Multiscale numerical modeling of the species balance and transport in the ionized gas phase and on the nanostructured solid surface complemented by the heat exchange model is used to demonstrate the possibility of minimizing the Gibbs-Thompson effect in low-temperature, low-pressure chemically active plasma-assisted growth of uniform arrays of very thin Si nanowires, impossible otherwise. It is shown that plasma-specific effects drastically shorten and decrease the dispersion of the incubation times for the nucleation of nanowires on non-uniform Au catalyst nanoparticle arrays. The fast nucleation makes it possible to avoid a common problem of small catalyst nanoparticle burying by amorphous silicon. These results explain a multitude of experimental observations on chemically active plasma-assisted Si nanowire growth and can be used for the synthesis of a range of inorganic nanowires for environmental, biomedical, energy conversion, and optoelectronic applications.
Resumo:
It is shown that plasmas can minimize the adverse Gibbs-Thompson effect in thin quantum wire growth. The model of Si nanowirenucleation includes the unprecedented combination of the plasma sheath, ion- and radical-induced species creation and heating effects on the surface and within an Au catalyst nanoparticle. Compared to neutral gas thermal processes, much thinner, size-selective wires can nucleate at the same temperature and pressure while much lower energy and matter budget is needed to grow same-size wires. This explains the experimental observations and may lead to energy- and matter-efficient synthesis of a broader range of one-dimensional quantum structures.
Resumo:
Plasma sheath, nanostructure growth, and thermal models are used to describe carbon nanofiber (CNF) growth and heating in a low-temperature plasma. It is found that when the H2 partial pressure is increased, H atom recombination and H ion neutralization are the main mechanisms responsible for energy release on the catalyst surface. Numerical results also show that process parameters such as the substrate potential, electron temperature and number density mainly affect the CNF growth rate and plasma heating at low catalyst temperatures. In contrast, gas pressure, ion temperature, and the C2H2:H2 supply ratio affect the CNF growth at all temperatures. It is shown that plasma-related processes substantially increase the catalyst particle temperature, in comparison to the substrate and the substrate-holding platform temperatures.
Resumo:
Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.
Resumo:
One-dimensional ZnO nanostructures were successfully synthesized on single-crystal silicon substrates via a simple thermal evaporation and vapour-phase transport method under different process temperatures from 500 to 1000 °C. The detailed and in-depth analysis of the experimental results shows that the growth of ZnO nanostructures at process temperatures of 500, 800, and 1000 °C is governed by different growth mechanisms. At a low process temperature of 500 °C, the ZnO nanostructures feature flat and smooth tips, and their growth is primarily governed by the vapour-solid mechanism. At an intermediate process temperature of 800 °C, the ZnO nanostructures feature cone-shape tips, and their growth is primarily governed by the self-catalyzed and saturated vapour–liquid–solid mechanism. At a high process temperature of 1000 °C, the alloy tip appears on the front side of the ZnO nanostructures, and their growth is primarily governed by the common catalyst-assisted vapour–liquid–solid mechanism. It is also shown that the morphological, structural, optical, and compositional properties of the synthesized ZnO nanostructures are closely related to the process temperature. These results are highly relevant to the development of light-emitting diodes, chemical sensors, energy conversion devices, and other advanced applications.
Resumo:
Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies. © 2007 American Institute of Physics.