464 resultados para family stability
Resumo:
Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.
Resumo:
Baseline findings from the Healthy Home Child Care Project include data from Family Child Care Providers (FCCPs) in Oregon (n=53) who completed assessments of nutrition and physical activity policies and practices and BMI data for children in the care of FCCPs (n=205). Results show that a significant percentage of FCCPs failed to meet child care standards in several areas and that 26.8% of children under the care of FCCPs were overweight or obese. These data supported the development of an Extension-delivered intervention specific to FCCPs in Oregon and highlight areas of concern that should be addressed through targeted trainings of FCCPs.
Resumo:
A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.
Resumo:
Reliable operation of a sugar factory boiler station is essential for efficient and timely processing of the cane supply. Sugar factory boilers have to contend with changes in fuel quality caused by variations in performance of the extraction station, different cane varieties and associated agronomic factors along with fluctuations in factory steam demand. These variations can affect the stability of combustion in boiler furnaces leading to reductions in boiler steam output and large furnace pressure fluctuations that can cause serious damage. This paper investigates the causes of unstable combustion, discusses aspects of boiler design that make a boiler more susceptible to unstable combustion and uses modelling to evaluate different options for improving combustion stability.
Resumo:
Introduction The importance of in vitro biomechanical testing in today’s understanding of spinal pathology and treatment modalities cannot be stressed enough. Different studies have used differing levels of dissection of their spinal segments for their testing protocols[1, 2]. The aim of this study was to assess the impact of removing the costovertebral joints and partial resection of the spinous process sequentially, on the stiffness of the immature thoracic bovine spinal segment. Materials and Methods Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments with 5cm of attached rib on each side and full spinous processes including levels T4-T11 (n=28). They were potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. They were first tested intact for ten load cycles with data collected from the tenth cycle. Progressive dissection was performed by removing first the attached ribs, followed by the spinous process at its base. Biomechanical testing was carried out after each level of dissection using the same protocol. Statistical analysis of the data was performed using repeated measures ANOVA. Results In combined flexion/extension there was a significant reduction in stiffness of 16% (p=0.002). This was mainly after resection of the ribs (14%, p=0.024) and mainly occurred in flexion where stiffness reduced by 22% (p=0.021). In extension, stiffness dropped by 13% (p=0.133). However there was no further significant change in stiffness on resection of the spinous process (<1%) (p=1.00). In lateral bending there was a significant decrease in stiffness of 13% (p<0.001). This comprised a drop of 11% on resection of the ribs (p=0.009) and a further 8% on resection of the spinous process (p=0.014). There was no difference between left and right bending. In axial rotation there was no significant change in stiffness after each stage of dissection (p=0.253). There was no difference between left and right rotation. Conclusion The costovertebral joints play a significant role in providing stability to the bovine thoracic spine in both flexion/extension and lateral bending, whereas the spinous processes play a minor role. Both elements have little effect on axial rotation stability.
Resumo:
This paper describes a strategic model of bargaining within a family to determine how to care for an elderly parent. We estimate the parameters of the model using data from the National Long-term Care Survey. We find that the parameter estimates generally make sense and that the model is consistent with the data. The results have strong implications for using less structural empirical models for policy analysis.
Resumo:
We present a structural model of how families decide who should care for elderly parents. We use data from the National Long-Term Care Survey to estimate and test the parameters of the model. Then we use the parameter estimates to simulate the effects of the existing long-term trends in terms of the common but untested explanations for them. Finally, we simulate the effects of alternative family bargaining rules on individual utility to measure the sensitivity of our results to the family decision-making assumptions we make.
Resumo:
We use the 1993 wave of the Assets and Health Dynamics Among the Oldest Old (AHEAD) data set to estimate a game-theoretic model of families' decisions concerning the provision of informal and formal care for elderly individuals. The outcome is the Nash equilibrium where each family member jointly determines her consumption, transfers for formal care, and allocation of time to informal care, market work, and leisure. We use the estimates to decompose the effects of adult children's opportunity costs, quality of care, and caregiving burden on their propensities to provide informal care. We also simulate the effects of a broad range of policies of current interest. © (2009) by the Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association.
Resumo:
Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand-pairing step in HR. RAD51 associated protein 1 (RAD51AP1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA-damaging treatment. Purified RAD51AP1 binds both dsDNA and a D loop structure and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.
Resumo:
The nonlinear stability analysis introduced by Chen and Haughton [1] is employed to study the full nonlinear stability of the non-homogeneous spherically symmetric deformation of an elastic thick-walled sphere. The shell is composed of an arbitrary homogeneous, incompressible elastic material. The stability criterion ultimately requires the solution of a third-order nonlinear ordinary differential equation. Numerical calculations performed for a wide variety of well-known incompressible materials are then compared with existing bifurcation results and are found to be identical. Further analysis and comparison between stability and bifurcation are conducted for the case of thin shells and we prove by direct calculation that the two criteria are identical for all modes and all materials.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
The critical role that family plays in Chinese Heritage Language learning has gained increasing attention from psychological, political and sociological scholarship. Guided by Bourdieu’s notion of ‘habitus’, our mixed methods sociological study firstly addresses the need for quantitative evidence on the relationship between family support and Chinese Heritage Language proficiency through a survey of 230 young Chinese Australians; and then explores the dynamics of family support of Chinese Heritage Language learning through multiple interviews with five participants. The interview data demonstrate ongoing intergenerational reproduction of Chinese Heritage Language through various forms of family inculcation. Learners’ transition from resistance to commitment is a focus of the analysis. Extant research struggles to theorise the reasons behind this transition. We offer a Bourdieusian explanation that construes the transition as ‘habitus realisation’. Our study has implications for Chinese Heritage Language researchers, Chinese immigrant parents and Chinese teachers.
Resumo:
A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled plasmas with external at coil configurations. The measurements also reveal a weak azimuthal dependence of the global plasma parameters at low values of the input RF power, which was earlier predicted theoretically. The azimuthal dependence of the global plasma parameters vanishes at high input RF powers. Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing applications and surface engineering.
Resumo:
This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.
Resumo:
INTRODUCTION: Galectin family members have been demonstrated to be abnormally expressed in cancer at the protein and mRNA level. This study investigated the levels of galectin proteins and mRNA expression in a large cohort of patients with papillary thyroid carcinoma and matched lymph node metastases with particular emphasis on galectin-1 and galectin-3. METHODS: mRNA expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were analysed by real-time polymerase chain reaction in 65 papillary thyroid carcinomas, 30 matched lymph nodes with metastatic papillary thyroid carcinoma and 5 non-cancer thyroid tissues. Galectin-1 and 3 protein expression was determined by immunohistochemistry in these samples. RESULTS: Significant expression differences in all tested galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were noted for mRNA in papillary thyroid carcinomas, with and without lymph node metastasis. Galectin-1 protein was more strongly expressed than galectin-3 protein in papillary thyroid carcinoma. Galectin-1 protein was found to be overexpressed in 32% of primary papillary thyroid carcinomas. A majority of lymph nodes with metastatic papillary thyroid carcinoma (53%) had significantly increased expression of galectin-1 protein, as did 47% of primaries with metastases. Galectin-1 mRNA levels were decreased in the vast majority (94%) of primary thyroid carcinomas that did not have metastases present. Galectin-3 protein levels were noted to be overexpressed in 15% of primary papillary thyroid carcinomas. In primary papillary thyroid carcinoma with lymph node metastases, 32% had over expression of galectin-3 protein. Overexpression of galectin-3 mRNA was noted in 58% of papillary thyroid carcinomas and 64% of lymph nodes bearing metastatic papillary thyroid carcinoma. Also, primary papillary thyroid carcinoma with lymph node metastases had significantly higher expression of galectin-3 mRNA compared to those without lymph node metastases. CONCLUSION: Galectin family members show altered expression at the mRNA level in papillary thyroid cancers. Overexpression of galectin-1 and 3 proteins were noted in papillary thyroid carcinoma with lymph node metastases. The results presented here demonstrated that galectin-1 and galectin-3 expression have important roles in clinical progression of papillary thyroid carcinoma.