727 resultados para ecological engineering
Resumo:
To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which could stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum, and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there is no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate the osteogenic/cementogenic differentiation of PDLCs in tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr2+ ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in simulated body fluids environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue engineering application.
Resumo:
At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.
Resumo:
Adipose tissue engineering offers a promising alternative to the current surgical techniques for the treatment of soft tissue defects. It is a challenge to find the appropriate scaffold that not only represents a suitable environment for cells but also allows fabrication of customized tissue constructs, particularly in breast surgery. We investigated two different scaffolds for their potential use in adipose tissue regeneration. Sponge-like polyurethane scaffolds were prepared by mold casting with methylal as foaming agent, whereas polycaprolactone scaffolds with highly regular stacked-fiber architecture were fabricated with fused deposition modeling. Both scaffold types were seeded with human adipose tissuederived precursor cells, cultured and implanted in nude mice using a femoral arteriovenous flow-through vessel loop for angiogenesis. In vitro, cells attached to both scaffolds and differentiated into adipocytes. In vivo, angiogenesis and adipose tissue formation were observed throughout both constructs after 2 and 4 weeks, with angiogenesis being comparable in seeded and unseeded constructs. Fibrous tissue formation and adipogenesis were more pronounced on polyurethane foam scaffolds than on polycaprolactone prototyped scaffolds. In conclusion, both scaffold designs can be effectively used for adipose tissue engineering.
Resumo:
The decline of large coevolved frugivorous species within fragmented habitats can have an effect on ecological processes, for example, seed dispersal and germination. It is therefore necessary for more resilient species to ensure essential processes are maintained within the system. This study investigates the influence of two rodent species, Melomys cervinipes (Fawn-footed Melomys) and Rattus fuscipes (Bush Rat), on the germination process of rainforest fruits. Both species are endemic to north Queensland rainforest and commonly found in fragmented habitats in high densities. We found in 85% of fruit species tested, rodent feeding increased seed germination rate by a factor of 3.5. Our results suggest that rodents can play a significant role in enhancing germination rates of fruits in the tropical rainforest of far north Queensland.
Resumo:
This paper reports on an experiment that was conducted to determine the extent to which group dynamics impacts on the effectiveness of software development teams. The experiment was conducted on software engineering project students at the Queensland University of Technology (QUT).
Resumo:
Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems.
Resumo:
The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.
Resumo:
Ecological sustainability has been proposed to address the problem of human impacts increasingly degrading planetary resources and ecosystems, threatening biodiversity, eco-services and human survival. Ecological sustainability is an imperative, with Australia having one of the highest eco-footprints per person worldwide. While significant progress has been made via implementation of ecologically sustainable design in urban communities, relatively little has been undertaken in small, disparate regional communities in Australia. Regional communities are disadvantaged by rural economic decline associated with structural change and inequities of resource transfer. The ecologically sustainable solution is holistic, so all settlements need to be globally wise, richly biodiverse yet locally specific. As a regional solution to this global problem, this research offers the practical means by which a small regional community can contribute. It focuses on the design and implementation of a community centre and the fostering of transformative community learning through an integrated ‘learning community’ awareness of ecologically sustainable best practice. Lessons learned are documented by the participant researcher who as a designer, facilitator, local resident and social narrator has been deeply connected with the Tweed-Caldera region over a period since 1980. The collective action of the local community of Chillingham has been diligently recorded over a decade of design and development. Over this period, several positive elements emerged in terms of improvements to the natural and built environment, greater social cohesion and co-operative learning along with a shift towards a greener local economy. Behavioural changes in the community were noted as residents strived to embrace ecological ideals and reduce fossil fuel dependency. They found attractive local solutions to sourcing of food and using local employment opportunities to up skill their residents via transformative learning as a community in transition. Finally, the catalytic impact of external partnering has also been documented. How well the region as a whole has achieved its ecologically sustainable objectives is measured in terms of the delivered success of private and public partnering with the community, the creation of a community centre cum environment education centre, the restoration of local heritage buildings, the repair of riparian forests and improved water conditions in local river systems, better roads and road safety, local skills and knowledge transfer, support of local food and local/regional growers markets to attract tourists via the integrated trails network. In aggregate, each and every element contributes to a measure of eco-positive development for the built environment, its social organisation and its economy that has guided the local community to find its own pathway to sustainability. Within the Tweed-Caldera bioregion in northern New South Wales, there has been a lack of strategic planning, ecologically sustainable knowledge and facilities in isolated communities that could support the development of a local sustained green economy, provide a hub for socio-cultural activities and ecology based education. The first challenge in this research was to model a whole systems approach to eco-positive development in Chillingham, NSW, a small community where Nature and humanity know no specific boundary. The net result was the creation of a community environment education centre featuring best-affordable ecological practice and regionally distinctive, educational building form from a disused heritage building (cow bale). This development, implemented over a decade, resonated with the later regional wide programs that were linked in the Caldera region by the common purpose of extending the reach of local and state government assistance to regional NSW in economic transition coupled with sustainability. The lessons learned from these linked projects reveal that subsequent programs have been significantly easier to initiate, manage, develop and deliver results. In particular, pursuing collaborative networks with all levels of government and external private partners has been economically effective. Each community’s uniqueness has been celebrated and through drawing out these distinctions, has highlighted local vision, strategic planning, sense of belonging and connection of people with place. This step has significantly reduced the level of friction between communities that comes from natural competition for the finite pool of funds. Following the pilot Tweed-Caldera study, several other NSW regional communities are now undertaking a Community Economic Transition Program based on the processes, trials and positive experiences witnessed in the Tweed-Caldera region where it has been demonstrated that regional community transition programs can provide an opportunity to plan and implement effective long term strategies for sustainability, empowering communities to participate in eco-governance. This thesis includes the design and development of a framework for community created environment education centres to provide an equal access place for community to participate to meet their essential needs locally. An environment centre that facilitates community transition based on easily accessible environmental education, skills and infrastructure is necessary to develop local cultures of sustainability. This research draws upon the literatures of ecologically sustainable development, environmental education and community development in the context of regional community transition towards ‘strong sustainability’. The research approach adapted is best described as a four stage collaborative action research cycle where the participant researcher (me) has a significant involvement in the process to foster local cultures of sustainability by empowering its citizens to act locally and in doing so, become more self reliant and socially resilient. This research also draws upon the many fine working exemplars, such as the resilience of the Cuban people, the transition town initiative in Totnes, U.K. and the models of Australian Community Gardens, such as CERES (Melbourne) and Northey Street (Brisbane). The objectives of this study are to research and evaluate exemplars of ecologically sustainable environment education centres, to facilitate the design and development of an environment education centre created by a small regional community as an ecologically sustainable learning environment; to facilitate a framework for community transition based on environmental education, skills and infrastructure necessary to develop local cultures of sustainability. The research was undertaken as action research in the Tweed Caldera in Northern NSW. This involved the author as participant researcher, designer and volunteer in two interconnected initiatives: the Chillingham Community Centre development and the Caldera Economic Transition Program (CETP). Both initiatives involved a series of design-led participatory community workshops that were externally facilitated with the support of government agency partnerships, steering committees and local volunteers. Together the Caldera research programs involved communities participating in developing their own strategic planning process and outcomes. The Chillingham Community Centre was developed as a sustainable community centre/hub using a participatory design process. The Caldera Economic Transition Program (CETP) prioritised Caldera region projects: the Caldera farmer’s market; community gardens and community kitchens; community renewable energy systems and an integrated trails network. The significant findings were: the CETP projects were capable of moving towards an eco-positive design benchmark through transformative learning. Community transition to sustainability programs need to be underpinned by sustainability and environmental education based frameworks and practical on ground experience in local needs based projects through transformative learning. The actioned projects were successfully undertaken through community participation and teamwork. Ecological footprint surveys were undertaken to guide and assess the ongoing community transition process, however the paucity of responses needs to be revisited. The concept of ecologically sustainable development has been adopted internationally, however existing design and planning strategies do not assure future generations continued access to healthy natural life support systems. Sustainable design research has usually been urban focussed, with little attention paid to regional communities. This study seeks to redress this paucity through the design of ecologically sustainable (deep green) learning environments for small regional communities. Through a design-led process of environmental education, this study investigates how regional communities can be facilitated to model the principles of eco-positive development to support transition to local cultures of sustainability. This research shows how community transition processes and projects can incorporate sustainable community development as transformative learning through design. Regional community transition programs can provide an opportunity to plan long term strategies for sustainability, empowering people to participate in eco-governance. A framework is developed for a community created environment education centre to provide an equal access place for the local community to participate in implementing ways to meet their essential needs locally. A community environment education centre that facilitates community transition based on holistic environmental education, skills and infrastructure is necessary to develop local cultures of sustainability.