561 resultados para dynamic causal modeling
Resumo:
Service robots that operate in human environments will accomplish tasks most efficiently and least disruptively if they have the capability to mimic and understand the motion patterns of the people in their workspace. This work demonstrates how a robot can create a humancentric navigational map online, and that this map re ects changes in the environment that trigger altered motion patterns of people. An RGBD sensor mounted on the robot is used to detect and track people moving through the environment. The trajectories are clustered online and organised into a tree-like probabilistic data structure which can be used to detect anomalous trajectories. A costmap is reverse engineered from the clustered trajectories that can then inform the robot's onboard planning process. Results show that the resultant paths taken by the robot mimic expected human behaviour and can allow the robot to respond to altered human motion behaviours in the environment.
Resumo:
The focus of knowledge management (KM) in the construction industry is moving towards capability building for value creation. The study reported by this paper is motivated by recent assertions about the genesis and evolution of knowledge management capability (KMC) in the strategic management field. It attempts to shed light on the governance of learning mechanisms that develop KMC within the context of construction firms. A questionnaire survey was administered to a sample of construction contractors operating in the very dynamic Hong Kong market to elicit opinions on the learning mechanisms and business outcomes of targeted firms. On the basis of a total of 149 usable responses, structural equation modeling (SEM) analysis identified relationships among knowledge-governance mechanisms, knowledge processes, and business performance, thereby supporting the existence of strategic learning loops. The study findings provide evidence from the construction context for capability assertions that knowledge-governance mechanisms and processes form learning mechanisms that carry out strategic learning to create value, effect performance outcomes, and ultimately drive the evolution of KMC. The findings imply that it is feasible for managing construction firms to govern learning mechanisms through managing the capability-based holistic KM system, thereby reconfiguring KMC to match needs in the dynamic market environment over time.
Resumo:
A firm, as a dynamic, evolving, and quasi-autonomous system of knowledge production and application, develops knowledge management capability (KMC) through strategic learning in order to sustain competitive advantages in a dynamic environment. Knowledge governance mechanisms and knowledge processes connect and interact with each other forming learning mechanisms, which carry out double loop learning that drives genesis and evolution of KMC to modify operating routines that effect desired performance. This paper reports a study that was carried out within a context of construction contractors, a type of project-based firms, operating within the dynamic Hong Kong construction market. A multiple-case design was used to incorporate evidence from the literature and interviews, with the help of system dynamics modeling, to visualize the evolution of KMC. The study demonstrates the feasibility to visualize how a firm's KMC matches its operating environment over time. The findings imply that knowledge management (KM) applications can be better planned and controlled through evaluation of KM performance over time from a capability perspective.
Resumo:
There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.
Resumo:
Threats against computer networks evolve very fast and require more and more complex measures. We argue that teams respectively groups with a common purpose for intrusion detection and prevention improve the measures against rapid propagating attacks similar to the concept of teams solving complex tasks known from field of work sociology. Collaboration in this sense is not easy task especially for heterarchical environments. We propose CIMD (collaborative intrusion and malware detection) as a security overlay framework to enable cooperative intrusion detection approaches. Objectives and associated interests are used to create detection groups for exchange of security-related data. In this work, we contribute a tree-oriented data model for device representation in the scope of security. We introduce an algorithm for the formation of detection groups, show realization strategies for the system and conduct vulnerability analysis. We evaluate the benefit of CIMD by simulation and probabilistic analysis.
Resumo:
The destination branding literature emerged as recently as 1998, and there remains a dearth of empirical data that tests the effectiveness of brand campaigns over time. This paper reports the results of an investigation into consumer-based brand equity for Australia as a long haul destination in an emerging South American market. In spite of the high level of academic interest in the measurement of perceptions of destinations since the 1970s, few previous studies have examined perceptions held by South American consumers. Findings suggest that destination brand awareness, brand image, and brand value are positively related to brand loyalty for a long-haul destination. The results also indicate that Australia is a more compelling destination brand for previous visitors compared to non-visitors.
Resumo:
A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
The SimCalc Vision and Contributions Advances in Mathematics Education 2013, pp 419-436 Modeling as a Means for Making Powerful Ideas Accessible to Children at an Early Age Richard Lesh, Lyn English, Serife Sevis, Chanda Riggs … show all 4 hide » Look Inside » Get Access Abstract In modern societies in the 21st century, significant changes have been occurring in the kinds of “mathematical thinking” that are needed outside of school. Even in the case of primary school children (grades K-2), children not only encounter situations where numbers refer to sets of discrete objects that can be counted. Numbers also are used to describe situations that involve continuous quantities (inches, feet, pounds, etc.), signed quantities, quantities that have both magnitude and direction, locations (coordinates, or ordinal quantities), transformations (actions), accumulating quantities, continually changing quantities, and other kinds of mathematical objects. Furthermore, if we ask, what kind of situations can children use numbers to describe? rather than restricting attention to situations where children should be able to calculate correctly, then this study shows that average ability children in grades K-2 are (and need to be) able to productively mathematize situations that involve far more than simple counts. Similarly, whereas nearly the entire K-16 mathematics curriculum is restricted to situations that can be mathematized using a single input-output rule going in one direction, even the lives of primary school children are filled with situations that involve several interacting actions—and which involve feedback loops, second-order effects, and issues such as maximization, minimization, or stabilizations (which, many years ago, needed to be postponed until students had been introduced to calculus). …This brief paper demonstrates that, if children’s stories are used to introduce simulations of “real life” problem solving situations, then average ability primary school children are quite capable of dealing productively with 60-minute problems that involve (a) many kinds of quantities in addition to “counts,” (b) integrated collections of concepts associated with a variety of textbook topic areas, (c) interactions among several different actors, and (d) issues such as maximization, minimization, and stabilization.
Resumo:
This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chat room communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chat room tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multi-way techniques including Tucker1, Tucker3 [2], and Parafac [3].
Resumo:
This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.
Resumo:
Construction practitioners often experience unexpected results of their scheduling-related decisions. This is mainly due to lack of understanding of the dynamic nature of construction system. However, very little attention has been given to its significant importance and few empirical studies have been undertaken on this issue. This paper, therefore, analyzes the effect of aggressive scheduling, overtime, resource adding, and schedule slippage on construction performance, focusing on workers’ reactions to those scheduling decisions. Survey data from 102 construction practitioners in 38 construction sites are used for the analysis. The results indicate that efforts to increase work rate by working overtime, resource adding, and aggressive scheduling can be offset due to losses in productivity and quality. Based on the research findings, practical guidelines are then discussed to help site managers to effectively deal with the dynamics of scheduling and improve construction performance.
Resumo:
Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
This paper deals with causal effect estimation strategies in highly heterogeneous empirical settings such as entrepreneurship. We argue that the clearer used of modern tools developed to deal with the estimation of causal effects in combination with our analysis of different sources of heterogeneity in entrepreneurship can lead to entrepreneurship with higher internal validity. We specifically lend support from the counterfactual logic and modern research of estimation strategies for causal effect estimation.
Resumo:
Graphene has promised many novel applications in nanoscale electronics and sustainable energy due to its novel electronic properties. Computational exploration of electronic functionality and how it varies with architecture and doping presently runs ahead of experimental synthesis yet provides insights into types of structures that may prove profitable for targeted experimental synthesis and characterization. We present here a summary of our understanding on the important aspects of dimension, band gap, defect, and interfacial engineering of graphene based on state-of-the-art ab initio approaches. Some most recent experimental achievements relevant for future theoretical exploration are also covered.