505 resultados para asset liquidity
Resumo:
The widespread development of Decision Support System (DSS) in construction indicate that the evaluation of software become more important than before. However, it is identified that most research in construction discipline did not attempt to assess its usability. Therefore, little is known about the approach on how to properly evaluate a DSS for specific problem. In this paper, we present a practical framework that can be guidance for DSS evaluation. It focuses on how to evaluate software that is dedicatedly designed for consultant selection problem. The framework features two main components i.e. Sub-system Validation and Face Validation. Two case studies of consultant selection at Malaysian Department of Irrigation and Drainage were integrated in this framework. Some inter-disciplinary area such as Software Engineering, Human Computer Interaction (HCI) and Construction Project Management underpinned the discussion of the paper. It is anticipated that this work can foster better DSS development and quality decision making that accurately meet the client’s expectation and needs
Resumo:
The purpose of this paper is to explore the trend of Purpose Built Office (PBO) supply and occupancy in Malaysia. In achieving this, the number of PBO supply by the private sector in the market is compared with the government sector to gain an understanding of the current emerging market for the PBO. There have been limited studies in Malaysia comparing the trend supply and occupancy of PBOs by both sectors. This paper outcome will illustrate the needs for public sector asset management in Malaysia, particularly for PBOs. An analytical framework is developed using time series to measure the level of supply and occupancy of PBO by both sectors, indicating the percentage of government’s PBO compared to the total numbers of PBOs in the market from 2004 to 2010
Resumo:
The purpose of this paper is to study the profiling of property, plant and equipment (PPE) contributions in Australia and Malaysia construction companies. A company’s worth is usually based on the listed share price on the stock exchange. In arriving at the net profit, the contribution of PPE in the company’s assets is somehow being neglected. This paper will investigate the followings; firstly the level of PPE contribution in the construction firms by comparing the PPE contributions to the company’s asset as a whole which includes fixed (non-current) assets and current assets. This will determine the true strength of the companies, rather than relying on the share prices alone. Secondly, the paper will determine the trend of company’s asset ownership to show the company’s performance of the PPE ownership during the period of study. The data is based on the selected construction companies listed on the Australian Stock Exchange (ASX) and Malaysian Stock Exchange, known as Bursa Malaysia. The profiling will help to determine the strength of the construction firms based on the PPE holding, and the level of PPE ownerships in the two countries construction firms during the period of study.
Resumo:
Rural property in Australia has seen significant market resurgence over the past 3 years, with improved seasonal conditions in a number of states, improved commodity prices and a greater interest and purchase of rural land by major international corporations and investment institutions. Much of this change in perspective in relation to rural property as an asset class can be linked to the food shortage of 2007 and the subsequent interest by many countries in respect to food security. This paper will address the total and capital return performance of a major agricultural area and compare these returns on the basis of both location of land and land use. The comparison will be used to determine if location or actual land use has a greater influence on rural property capital and income returns. This performance analysis is based on over 40,000 rural sales transactions. These transactions cover all market based rural property transactions in New South Wales, Australia for the period January 1990 to December 2010. Correlation analysis and investment performance analysis has also been carried out to determine the possible relationships between location and land use and subsequent changes in rural land capital values.
Resumo:
The concept of constructability integrates individual construction functions and experiences through suitable and timely inputs into early stages of project planning and design. It aims to ease construction processes for a more effective and efficient achievement of overall project objectives. Similarly, the concepts of operability and maintainability integrate the functions and experiences of Operation and Maintenance (O&M) into project planning and design. Various studies suggested that these concepts have been implemented in isolation of each other and thus preventing optimum result in delivering infrastructure projects. This paper explores the integration of these three concepts in order to maximize the benefits of their implementation. It reviews the literature to identify the main O&M concerns, and assesses their association with constructability principles. This provides a structure to develop an extended constructability model that includes O&M concerns. It is anticipated that an extended constructability model that include O&M considerations can lead to a more efficient and effective delivery of infrastructure projects.
Resumo:
To ensure infrastructure assets are procured and maintained by government on behalf of citizens, appropriate policy and institutional architecture is needed, particularly if a fundamental shift to more sustainable infrastructure is the goal. The shift in recent years from competitive and resource-intensive procurement to more collaborative and sustainable approaches to infrastructure governance is considered a major transition in infrastructure procurement systems. In order to better understand this transition in infrastructure procurement arrangements, the concept of emergence from Complex Adaptive Systems (CAS) theory is offered as a key construct. Emergence holds that micro interactions can result in emergent macro order. Applying the concept of emergence to infrastructure procurement, this research examines how interaction of agents in individual projects can result in different industry structural characteristics. The paper concludes that CAS theory, and particularly the concept of ‘emergence’, provides a useful construct to understand infrastructure procurement dynamics and progress towards sustainability.
Resumo:
This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.
Resumo:
This paper studies the missing covariate problem which is often encountered in survival analysis. Three covariate imputation methods are employed in the study, and the effectiveness of each method is evaluated within the hazard prediction framework. Data from a typical engineering asset is used in the case study. Covariate values in some time steps are deliberately discarded to generate an incomplete covariate set. It is found that although the mean imputation method is simpler than others for solving missing covariate problems, the results calculated by it can differ largely from the real values of the missing covariates. This study also shows that in general, results obtained from the regression method are more accurate than those of the mean imputation method but at the cost of a higher computational expensive. Gaussian Mixture Model (GMM) method is found to be the most effective method within these three in terms of both computation efficiency and predication accuracy.
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.
Resumo:
Strontium titanate nanocubes with an average edge length of 150mm have been successfully synthesized from a simple hydrothermal system. Characterization techniques such as X-ray powder diffraction analysis, scanning electron microscopy and energy-dispersive analysis of X-rays were used to investigate the products. The results showed that as-prepared powders are pure SrTiO3 with cubic shape, which consists with the growth habit of its intrinsic crystal structure. These uniform nanocubes with high crystallinity will exhibit superior physical properties in the practical applications. Furthermore, during the experimental process, it has been found that the dilute acid washing process is very important to obtain high pure SrTiO3.
Resumo:
Linear (or continuous) assets are engineering infrastructure that usually spans long distances and can be divided into different segments, all of which perform the same function but may be subject to different loads and environmental factors. Typical linear assets include railway lines, roads, pipelines and cables. How and when to renew such assets are critical decisions for asset owners as they normally involves significant capital investment. Through investigating the characteristics of linear asset renewal decisions and identifying the critical requirements that are associated with renewal decisions, we present a multi-criteria decision support method to help optimise renewal decisions. A case study that concerns renewal of an economiser's tubing system is a coal-fired power station is adopted to demonstrate the application of this method. Although the paper concerns a particular linear asset decision type, the approach has broad applicability for linear asset management.
Resumo:
In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.
Resumo:
Despite being poised as a standard for data exchange for operation and maintenance data, the database heritage of the MIMOSA OSA-EAI is clearly evident from using a relational model at its core. The XML schema (XSD) definitions, which are used for communication between asset management systems, are based on the MIMOSA common relational information schema (CRIS), a relational model, and consequently, many database concepts permeate the communications layer. The adoption of a relational model leads to several deficiencies, and overlooks advances in object-oriented approach for an upcoming version of the specification, and the common conceptual object model (CCOM) sees a transition to fully utilising object-oriented features for the standard. Unified modelling language (UML) is used as a medium for documentation as well as facilitating XSD code generation. This paper details some of the decisions faced in developing the CCOM and provides a glimpse into the future of asset management and data exchange models.
Resumo:
Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.