482 resultados para Web content adaptation
Resumo:
Web 2.0 technology and concepts are being used increasingly by organisations to enhance knowledge, efficiency, engagement and reputation. Understanding the concepts of Web 2.0, its characteristics, and how the technology and concepts can be adopted, is essential to successfully reap the potential benefits. In fact, there is a debate about using the Web 2.0 idiom to refer to the concept behind it; however, this term is widely used in literature as well as in industry. In this paper, the definition of Web 2.0 technology, its characteristics and the attributes, will be presented. In addition, the adoption of such technology is further explored through the presentation of two separate case examples of Web 2.0 being used: to enhance an enterprise; and to enhance university teaching. The similarities between these implementations are identified and discussed, including how the findings point to generic principles of adoption.
Resumo:
The high-pressure, cross-cultural, cross-factional and frequently cross-national nature of contemporary negotiation means that there are a number of clements potentially hampering efforts to achieve successful negotiation outcomes from face-to-face interactions. These hindrances include: resource scarcity (for example, finances, technology and facilities), time scarcity, geographical separation, lack of a COnl1110n language and an inability to Inaintain a consistent ongoing dialogue.
Resumo:
Twitter is now well established as the world’s second most important social media platform, after Facebook. Its 140-character updates are designed for brief messaging, and its network structures are kept relatively flat and simple: messages from users are either public and visible to all (even to unregistered visitors using the Twitter website), or private and visible only to approved ‘followers’ of the sender; there are no more complex definitions of degrees of connection (family, friends, friends of friends) as they are available in other social networks. Over time, Twitter users have developed simple, but effective mechanisms for working around these limitations: ‘#hashtags’, which enable the manual or automatic collation of all tweets containing the same #hashtag, as well allowing users to subscribe to content feeds that contain only those tweets which feature specific #hashtags; and ‘@replies’, which allow senders to direct public messages even to users whom they do not already follow. This paper documents a methodology for extracting public Twitter activity data around specific #hashtags, and for processing these data in order to analyse and visualize the @reply networks existing between participating users – both overall, as a static network, and over time, to highlight the dynamic structure of @reply conversations. Such visualizations enable us to highlight the shifting roles played by individual participants, as well as the response of the overall #hashtag community to new stimuli – such as the entry of new participants or the availability of new information. Over longer timeframes, it is also possible to identify different phases in the overall discussion, or the formation of distinct clusters of preferentially interacting participants.
Resumo:
The Web has become a worldwide repository of information which individuals, companies, and organizations utilize to solve or address various information problems. Many of these Web users utilize automated agents to gather this information for them. Some assume that this approach represents a more sophisticated method of searching. However, there is little research investigating how Web agents search for online information. In this research, we first provide a classification for information agent using stages of information gathering, gathering approaches, and agent architecture. We then examine an implementation of one of the resulting classifications in detail, investigating how agents search for information on Web search engines, including the session, query, term, duration and frequency of interactions. For this temporal study, we analyzed three data sets of queries and page views from agents interacting with the Excite and AltaVista search engines from 1997 to 2002, examining approximately 900,000 queries submitted by over 3,000 agents. Findings include: (1) agent sessions are extremely interactive, with sometimes hundreds of interactions per second (2) agent queries are comparable to human searchers, with little use of query operators, (3) Web agents are searching for a relatively limited variety of information, wherein only 18% of the terms used are unique, and (4) the duration of agent-Web search engine interaction typically spans several hours. We discuss the implications for Web information agents and search engines.
Resumo:
Purpose: Web search engines are frequently used by people to locate information on the Internet. However, not all queries have an informational goal. Instead of information, some people may be looking for specific web sites or may wish to conduct transactions with web services. This paper aims to focus on automatically classifying the different user intents behind web queries. Design/methodology/approach: For the research reported in this paper, 130,000 web search engine queries are categorized as informational, navigational, or transactional using a k-means clustering approach based on a variety of query traits. Findings: The research findings show that more than 75 percent of web queries (clustered into eight classifications) are informational in nature, with about 12 percent each for navigational and transactional. Results also show that web queries fall into eight clusters, six primarily informational, and one each of primarily transactional and navigational. Research limitations/implications: This study provides an important contribution to web search literature because it provides information about the goals of searchers and a method for automatically classifying the intents of the user queries. Automatic classification of user intent can lead to improved web search engines by tailoring results to specific user needs. Practical implications: The paper discusses how web search engines can use automatically classified user queries to provide more targeted and relevant results in web searching by implementing a real time classification method as presented in this research. Originality/value: This research investigates a new application of a method for automatically classifying the intent of user queries. There has been limited research to date on automatically classifying the user intent of web queries, even though the pay-off for web search engines can be quite beneficial. © Emerald Group Publishing Limited.
Resumo:
The goals of this research were to answer three questions. How predominant is religious searching online? How do people interact with Web search engines when searching for religious information? How effective are these interactions in locating relevant information? Specifically, referring to a US demographic, we analyzed five data sets from Web search engine, collected between 1997 and 2005, of over a million queries each in order to investigate religious searching on the Web. Results point to four key findings. First, there is no evidence of a decrease in religious Web-searching behaviors. Religious interest is a persistent topic of Web searching. Second, those seeking religious information on the Web are becoming slightly more interactive in their searching. Third, there is no evidence for a move away from mainstream religions toward non-mainstream religions since the majority of the search terms are associated with established religions. Fourth, our work does not support the hypothesis that traditional religious affiliation is associated with lower adoption of or sophistication with technology. These factors point to the Web as a potentially usefully communication medium for a variety of religious organizations. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Major Web search engines, such as AltaVista, are essential tools in the quest to locate online information. This article reports research that used transaction log analysis to examine the characteristics and changes in AltaVista Web searching that occurred from 1998 to 2002. The research questions we examined are (1) What are the changes in AltaVista Web searching from 1998 to 2002? (2) What are the current characteristics of AltaVista searching, including the duration and frequency of search sessions? (3) What changes in the information needs of AltaVista users occurred between 1998 and 2002? The results of our research show (1) a move toward more interactivity with increases in session and query length, (2) with 70% of session durations at 5 minutes or less, the frequency of interaction is increasing, but it is happening very quickly, and (3) a broadening range of Web searchers' information needs, with the most frequent terms accounting for less than 1% of total term usage. We discuss the implications of these findings for the development of Web search engines. © 2005 Wiley Periodicals, Inc.
Resumo:
Purpose - The web is now a significant component of the recruitment and job search process. However, very little is known about how companies and job seekers use the web, and the ultimate effectiveness of this process. The specific research questions guiding this study are: how do people search for job-related information on the web? How effective are these searches? And how likely are job seekers to find an appropriate job posting or application? Design/methodology/approach - The data used to examine these questions come from job seekers submitting job-related queries to a major web search engine at three points in time over a five-year period. Findings - Results indicate that individuals seeking job information generally submit only one query with several terms and over 45 percent of job-seeking queries contain a specific location reference. Of the documents retrieved, findings suggest that only 52 percent are relevant and only 40 percent of job-specific searches retrieve job postings. Research limitations/implications - This study provides an important contribution to web research and online recruiting literature. The data come from actual web searches, providing a realistic glimpse into how job seekers are actually using the web. Practical implications - The results of this research can assist organizations in seeking to use the web as part of their recruiting efforts, in designing corporate recruiting web sites, and in developing web systems to support job seeking and recruiting. Originality/value - This research is one of the first studies to investigate job searching on the web using longitudinal real world data. © Emerald Group Publishing Limited.
Resumo:
Purpose – The work presented in this paper aims to provide an approach to classifying web logs by personal properties of users. Design/methodology/approach – The authors describe an iterative system that begins with a small set of manually labeled terms, which are used to label queries from the log. A set of background knowledge related to these labeled queries is acquired by combining web search results on these queries. This background set is used to obtain many terms that are related to the classification task. The system then ranks each of the related terms, choosing those that most fit the personal properties of the users. These terms are then used to begin the next iteration. Findings – The authors identify the difficulties of classifying web logs, by approaching this problem from a machine learning perspective. By applying the approach developed, the authors are able to show that many queries in a large query log can be classified. Research limitations/implications – Testing results in this type of classification work is difficult, as the true personal properties of web users are unknown. Evaluation of the classification results in terms of the comparison of classified queries to well known age-related sites is a direction that is currently being exploring. Practical implications – This research is background work that can be incorporated in search engines or other web-based applications, to help marketing companies and advertisers. Originality/value – This research enhances the current state of knowledge in short-text classification and query log learning. Classification schemes, Computer networks, Information retrieval, Man-machine systems, User interfaces
Resumo:
This paper reports on an exploratory study of the role of web and social media in e-governments, especially in the context of Malaysia, with some comparisons and contrasts from other countries where such governmental efforts have been underway for awhile. It describes the current e-government efforts in Malaysia, and proposes that applying a theoretical framework would help understand the context and streamline these ongoing efforts. Specifically, it lays out a theoretical and cultural framework based on Mary Douglas’ (1996) Grid-Group Theory, Mircea Georgescu’s (2005) Three Pillars of E-Government, and Gerald Grant’s and Derek Chau’s (2006) Generic Framework for E-Government. Although this study is in its early stages, it has relevance to everyone who is interested in e-government efforts across the world, and especially relevant to developing countries.