353 resultados para Value-at-Risk (VaR)
Resumo:
Ethernet is a key component of the standards used for digital process buses in transmission substations, namely IEC 61850 and IEEE Std 1588-2008 (PTPv2). These standards use multicast Ethernet frames that can be processed by more than one device. This presents some significant engineering challenges when implementing a sampled value process bus due to the large amount of network traffic. A system of network traffic segregation using a combination of Virtual LAN (VLAN) and multicast address filtering using managed Ethernet switches is presented. This includes VLAN prioritisation of traffic classes such as the IEC 61850 protocols GOOSE, MMS and sampled values (SV), and other protocols like PTPv2. Multicast address filtering is used to limit SV/GOOSE traffic to defined subsets of subscribers. A method to map substation plant reference designations to multicast address ranges is proposed that enables engineers to determine the type of traffic and location of the source by inspecting the destination address. This method and the proposed filtering strategy simplifies future changes to the prioritisation of network traffic, and is applicable to both process bus and station bus applications.
Resumo:
Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.
Resumo:
We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexities of such a function class can be bounded in terms of the complexity of the basis classes. We give examples of the application of these techniques in finding data-dependent risk bounds for decision trees, neural networks and support vector machines.
Resumo:
We consider the problem of binary classification where the classifier can, for a particular cost, choose not to classify an observation. Just as in the conventional classification problem, minimization of the sample average of the cost is a difficult optimization problem. As an alternative, we propose the optimization of a certain convex loss function φ, analogous to the hinge loss used in support vector machines (SVMs). Its convexity ensures that the sample average of this surrogate loss can be efficiently minimized. We study its statistical properties. We show that minimizing the expected surrogate loss—the φ-risk—also minimizes the risk. We also study the rate at which the φ-risk approaches its minimum value. We show that fast rates are possible when the conditional probability P(Y=1|X) is unlikely to be close to certain critical values.
Resumo:
Many drivers in highly motorised countries believe that aggressive driving is increasing. While the prevalence of the behaviour is difficult to reliably identify, the consequences of on-road aggression can be severe, with extreme cases resulting in property damage, injury and even death. This research program was undertaken to explore the nature of aggressive driving from within the framework of relevant psychological theory in order to enhance our understanding of the behaviour and to inform the development of relevant interventions. To guide the research a provisional ‘working’ definition of aggressive driving was proposed encapsulating the recurrent characteristics of the behaviour cited in the literature. The definition was: “aggressive driving is any on-road behaviour adopted by a driver that is intended to cause physical or psychological harm to another road user and is associated with feelings of frustration, anger or threat”. Two main theoretical perspectives informed the program of research. The first was Shinar’s (1998) frustration-aggression model, which identifies both the person-related and situational characteristics that contribute to aggressive driving, as well as proposing that aggressive behaviours can serve either an ‘instrumental’ or ‘hostile’ function. The second main perspective was Anderson and Bushman’s (2002) General Aggression Model. In contrast to Shinar’s model, the General Aggression Model reflects a broader perspective on human aggression that facilitates a more comprehensive examination of the emotional and cognitive aspects of aggressive behaviour. Study One (n = 48) examined aggressive driving behaviour from the perspective of young drivers as an at-risk group and involved conducting six focus groups, with eight participants in each. Qualitative analyses identified multiple situational and person-related factors that contribute to on-road aggression. Consistent with human aggression theory, examination of self-reported experiences of aggressive driving identified key psychological elements and processes that are experienced during on-road aggression. Participants cited several emotions experienced during an on-road incident: annoyance, frustration, anger, threat and excitement. Findings also suggest that off-road generated stress may transfer to the on-road environment, at times having severe consequences including crash involvement. Young drivers also appeared quick to experience negative attributions about the other driver, some having additional thoughts of taking action. Additionally, the results showed little difference between males and females in the severity of behavioural responses they were prepared to adopt, although females appeared more likely to displace their negative emotions. Following the self-reported on-road incident, evidence was also found of a post-event influence, with females being more likely to experience ongoing emotional effects after the event. This finding was evidenced by ruminating thoughts or distraction from tasks. However, the impact of such a post-event influence on later behaviours or interpersonal interactions appears to be minimal. Study Two involved the quantitative analysis of n = 926 surveys completed by a wide age range of drivers from across Queensland. The study aimed to explore the relationships between the theoretical components of aggressive driving that were identified in the literature review, and refined based on the findings of Study One. Regression analyses were used to examine participant emotional, cognitive and behavioural responses to two differing on-road scenarios whilst exploring the proposed theoretical framework. A number of socio-demographic, state and trait person-related variables such as age, pre-study emotions, trait aggression and problem-solving style were found to predict the likelihood of a negative emotional response such as frustration, anger, perceived threat, negative attributions and the likelihood of adopting either an instrumental or hostile behaviour in response to Scenarios One and Two. Complex relationships were found to exist between the variables, however, they were interpretable based on the literature review findings. Factor analysis revealed evidence supporting Shinar’s (1998) dichotomous description of on-road aggressive behaviours as being instrumental or hostile. The second stage of Study Two used logistic regression to examine the factors that predicted the potentially hostile aggressive drivers (n = 88) within the sample. These drivers were those who indicated a preparedness to engage in direct acts of interpersonal aggression on the road. Young, male drivers 17–24 years of age were more likely to be classified as potentially hostile aggressive drivers. Young drivers (17–24 years) also scored significantly higher than other drivers on all subscales of the Aggression Questionnaire (Buss & Perry, 1992) and on the ‘negative problem orientation’ and ‘impulsive careless style’ subscales of the Social Problem Solving Inventory – Revised (D’Zurilla, Nezu & Maydeu-Olivares, 2002). The potentially hostile aggressive drivers were also significantly more likely to engage in speeding and drink/drug driving behaviour. With regard to the emotional, cognitive and behavioural variables examined, the potentially hostile aggressive driver group also scored significantly higher than the ‘other driver’ group on most variables examined in the proposed theoretical framework. The variables contained in the framework of aggressive driving reliably distinguished potentially hostile aggressive drivers from other drivers (Nagalkerke R2 = .39). Study Three used a case study approach to conduct an in-depth examination of the psychosocial characteristics of n = 10 (9 males and 1 female) self-confessed hostile aggressive drivers. The self-confessed hostile aggressive drivers were aged 24–55 years of age. A large proportion of these drivers reported a Year 10 education or better and average–above average incomes. As a group, the drivers reported committing a number of speeding and unlicensed driving offences in the past three years and extensive histories of violations outside of this period. Considerable evidence was also found of exposure to a range of developmental risk factors for aggression that may have contributed to the driver’s on-road expression of aggression. These drivers scored significantly higher on the Aggression Questionnaire subscales and Social Problem Solving Inventory Revised subscales, ‘negative problem orientation’ and ‘impulsive/careless style’, than the general sample of drivers included in Study Two. The hostile aggressive driver also scored significantly higher on the Barrett Impulsivity Scale – 11 (Patton, Stanford & Barratt, 1995) measure of impulsivity than a male ‘inmate’, or female ‘general psychiatric’ comparison group. Using the Carlson Psychological Survey (Carlson, 1982), the self-confessed hostile aggressive drivers scored equal or higher scores than the comparison group of incarcerated individuals on the subscale measures of chemical abuse, thought disturbance, anti-social tendencies and self-depreciation. Using the Carlson Psychological Survey personality profiles, seven participants were profiled ‘markedly anti-social’, two were profiled ‘negative-explosive’ and one was profiled as ‘self-centred’. Qualitative analysis of the ten case study self-reports of on-road hostile aggression revealed a similar range of on-road situational factors to those identified in the literature review and Study One. Six of the case studies reported off-road generated stress that they believed contributed to the episodes of aggressive driving they recalled. Intense ‘anger’ or ‘rage’ were most frequently used to describe the emotions experienced in response to the perceived provocation. Less frequently ‘excitement’ and ‘fear’ were cited as relevant emotions. Notably, five of the case studies experienced difficulty articulating their emotions, suggesting emotional difficulties. Consistent with Study Two, these drivers reported negative attributions and most had thoughts of aggressive actions they would like to take. Similarly, these drivers adopted both instrumental and hostile aggressive behaviours during the self-reported incident. Nine participants showed little or no remorse for their behaviour and these drivers also appeared to exhibit low levels of personal insight. Interestingly, few incidents were brought to the attention of the authorities. Further, examination of the person-related characteristics of these drivers indicated that they may be more likely to have come from difficult or dysfunctional backgrounds and to have a history of anti-social behaviours on and off the road. The research program has several key theoretical implications. While many of the findings supported Shinar’s (1998) frustration-aggression model, two key areas of difference emerged. Firstly, aggressive driving behaviour does not always appear to be frustration driven, but can also be driven by feelings of excitation (consistent with the tenets of the General Aggression Model). Secondly, while the findings supported a distinction being made between instrumental and hostile aggressive behaviours, the characteristics of these two types of behaviours require more examination. For example, Shinar (1998) proposes that a driver will adopt an instrumental aggressive behaviour when their progress is impeded if it allows them to achieve their immediate goals (e.g. reaching their destination as quickly as possible); whereas they will engage in hostile aggressive behaviour if their path to their goal is blocked. However, the current results question this assertion, since many of the hostile aggressive drivers studied appeared prepared to engage in hostile acts irrespective of whether their goal was blocked or not. In fact, their behaviour appeared to be characterised by a preparedness to abandon their immediate goals (even if for a short period of time) in order to express their aggression. The use of the General Aggression Model enabled an examination of the three components of the ‘present internal state’ comprising emotions, cognitions and arousal and how these influence the likelihood of a person responding aggressively to an on-road situation. This provided a detailed insight into both the cognitive and emotional aspects of aggressive driving that have important implications for the design of relevant countermeasures. For example, the findings highlighted the potential value of utilising Cognitive Behavioural Therapy with aggressive drivers, particularly the more hostile offenders. Similarly, educational efforts need to be mindful of the way that person-related factors appear to influence one’s perception of another driver’s behaviour as aggressive or benign. Those drivers with a predisposition for aggression were more likely to perceive aggression or ‘wrong doing’ in an ambiguous on-road situation and respond with instrumental and/or hostile behaviour, highlighting the importance of perceptual processes in aggressive driving behaviour.
Resumo:
BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.