469 resultados para Solution Space
Resumo:
Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.
Resumo:
PURPOSE. To examine the deposition of tear phospholipids and cholesterol onto worn contact lenses and the effect of lens material and lens care solution. METHODS. Lipids were extracted from tears and worn contact lenses using 2:1 chloroform: Methanol and the extract washed with aqueous ammonium acetate, before analysis by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS. Twenty-three molecular lipids from the sphingomyelin (SM) and phosphatidylcholine (PC) classes were detected in tears, with total concentrations of each class determined to be 5 ± 1 pmol/μL (~3.8 μg/mL) and 6 ± 1 pmol/μL (~ 4.6μg/mL), respectively. The profile of individual phospholipids in both of these classes was shown to be similar in contact lens deposits. Deposition of representative polar and nonpolar lipids were shown to be significantly higher on senofilcon A contact lenses, with ~59 ng/lens SM, 195 ng/lens PC, and 9.9 μg/lens cholesterol detected, whereas balafilcon A lens extracts contained ~19 ng/lens SM, 19 ng/lens PC, and 3.9 μg/lens cholesterol. Extracts from lenses disinfected and cleaned with two lens care solutions showed no significant differences in total PC and SM concentrations; however, a greater proportion of PC than SM was observed, compared with that in tears. CONCLUSIONS. Phospholipid deposits extracted from worn contact lenses show a molecular profile similar to that in tears. The concentration of representative polar and nonpolar lipids deposited onto contact lenses is significantly affected by lens composition. There is a differential efficacy in the removal of PC and SM with lens care solutions.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.
Resumo:
Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.
Resumo:
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.
Resumo:
A major obstacle to 3-dimensional tissue engineering is incorporation of a functional vascular supply to support the expanding new tissue. This is overcome in an in vivo intrinsic vascularization model where an arteriovenous loop (AVL) is placed in a noncollapsible space protected by a polycarbonate chamber. Vascular development and hypoxia were examined from 3 days to 112 days by vascular casting, morphometric, and morphological techniques to understand the model's vascular growth and remodeling parameters for tissue engineering purposes. At 3 days a fibrin exudate surrounded the AVL, providing a scaffold to migrating inflammatory, endothelial, and mesenchymal cells. Capillaries formed between 3 and 7 days. Hypoxia and cell proliferation were maximal at 7 days, followed by a peak in percent vascular volume at 10 days (23.20±3.14% compared with 3.59±2.68% at 3 days, P<0.001). Maximal apoptosis was observed at 112 days. The protected space and spontaneous microcirculatory development in this model suggest it would be applicable for in vivo tissue engineering. A temporal window in a period of intense angiogenesis at 7 to 10 days is optimal for exogenous cell seeding and survival in the chamber, potentially enabling specific tissue outcomes to be achieved.
Resumo:
A novel method of spontaneous generation of new adipose tissue from an existing fat flap is described. A defined volume of fat flap based on the superficial inferior epigastric vascular pedicle in the rat was elevated and inset into a hollow plastic chamber implanted subcutaneously in the groin of the rat. The chamber walls were either perforated or solid and the chambers either contained poly(D,L-lactic-co-glycolic acid) (PLGA) sponge matrix or not. The contents were analyzed after being in situ for 6 weeks. The total volume of the flap tissue in all groups except the control groups, where the flap was not inserted into the chambers, increased significantly, especially in the perforated chambers (0.08 ± 0.007 mL baseline compared to 1.2 ± 0.08 mL in the intact ones). Volume analysis of individual component tissues within the flaps revealed that the adipocyte volume increased and was at a maximum in the chambers without PLGA, where it expanded from 0.04 ± 0.003 mL at insertion to 0.5 ± 0.08 mL (1250% increase) in the perforated chambers and to 0.16 ± 0.03 mL (400% increase) in the intact chambers. Addition of PLGA scaffolds resulted in less fat growth. Histomorphometric analysis rather than simple hypertrophy documented an increased number of adipocytes. The new tissue was highly vascularized and no fat necrosis or atypical changes were observed.
Resumo:
This project consists of a novel and an exegesis that explore the use of fiction to counter negative hegemonic representations of refugees in Australia. The possibilities of using Australian spaces, including border spaces, to reveal tensions surrounding refugee belonging and to highlight the reconfiguration of border sites in the Australian imaginary, is a particular focus of this work.
Resumo:
In the current climate of global economic volatility, there are increasing calls for training in enterprising skills and entrepreneurship to underpin the systemic innovation required for even medium-term business sustainability. The skills long-recognised as the essential for entrepreneurship now appear on the list of employability skills demanded by industry. The QUT Innovation Space (QIS) was an experiment aimed at delivering entrepreneurship education (EE), as an extra-curricular platform across the university, to the undergraduate students of an Australian higher education institute. It was an ambitious project that built on overseas models of EE studied during an Australian Learning and Teaching Council (ALTC) Teaching Fellowship (Collet, 2011) and implemented those approaches across an institute. Such EE approaches have not been attempted in an Australian university. The project tested resonance not only with the student population, from the perspective of what worked and what didn’t work, but also with every level of university operations. Such information is needed to inform the development of EE in the Australian university landscape. The QIS comprised a physical co-working space, virtual sites (web, Twitter and Facebook) and a network of entrepreneurial mentors, colleagues, and students. All facets of the QIS enabled connection between like-minded individuals that underpins the momentum needed for a project of this nature. The QIS became an innovation community within QUT. This report serves two purposes. First, as an account of the QIS project and its evolution, the report serves to identify the student demand for skills and training as well as barriers and facilitators of the activities that promote EE in an Australian university context. Second, the report serves as a how-to manual, in the tradition of many tomes on EE, outlining the QIS activities that worked as well as those that failed. The activities represent one measure of QIS outcomes and are described herein to facilitate implementation in other institutes. The QIS initially aimed to adopt an incubation model for training in EE. The ‘learning by doing’ model for new venture creation is a highly successful and high profile training approach commonly found in overseas contexts. However, the greatest demand of the QUT student population was not for incubation and progression of a developed entrepreneurial intent, but rather for training that instilled enterprising skills in the individual. These two scenarios require different training approaches (Fayolle and Gailly, 2008). The activities of the QIS evolved to meet that student demand. In addressing enterprising skills, the QIS developed the antecedents of entrepreneurialism (i.e., entrepreneurial attitudes, motivation and behaviours) including high-level skills around risk-taking, effective communication, opportunity recognition and action-orientation. In focusing on the would-be entrepreneur and not on the (initial) idea per se, the QIS also fostered entrepreneurial outcomes that would never have gained entry to the rigid stage-gated incubation model proposed for the original QIS framework. Important lessons learned from the project for development of an innovation community include the need to: 1. Evaluate the context of the type of EE program to be delivered and the student demand for the skills training (as noted above). 2. Create a community that builds on three dimensions: a physical space, a virtual environment and a network of mentors and partners. 3. Supplement the community with external partnerships that aid in delivery of skills training materials. 4. Ensure discovery of the community through the use of external IT services to deliver advertising and networking outlets. 5. Manage unrealistic student expectations of billion dollar products. 6. Continuously renew and rebuild simple activities to maintain student engagement. 7. Accommodate the non-university end-user group within the community. 8. Recognise and address the skills bottlenecks that serve as barriers to concept progression; in this case, externally provided IT and programming skills. 9. Use available on-line and published resources rather than engage in constructing project-specific resources that quickly become obsolete. 10. Avoid perceptions of faculty ownership and operate in an increasingly competitive environment. 11. Recognise that the continuum between creativity/innovation and entrepreneurship is complex, non-linear and requires different training regimes during the different phases of the pipeline. One small entity, such as the QIS, cannot address them all. The QIS successfully designed, implemented and delivered activities that included events, workshops, seminars and services to QUT students in the extra-curricular space. That the QIS project can be considered successful derives directly from the outcomes. First, the QIS project changed the lives of emerging QUT student entrepreneurs. Also, the QIS activities developed enterprising skills in students who did not necessarily have a business proposition, at the time. Second, successful outcomes of the QIS project are evidenced as the embedding of most, perhaps all, of the QIS activities in a new Chancellery-sponsored initiative: the Leadership Development and Innovation Program hosted by QUT Student Support Services. During the course of the QIS project, the Brisbane-based innovation ecosystem underwent substantial change. From a dearth of opportunities for the entrepreneurially inclined, there is now a plethora of entities that cater for a diversity of innovation-related activities. While the QIS evolved with the landscape, the demand endpoint of the QIS activities still highlights a gap in the local and national innovation ecosystems. The freedom to experiment and to fail is not catered for by the many new entities seeking to build viable businesses on the back of the innovation push. The onus of teaching the enterprising skills, which are the employability skills now demanded by industry, remains the domain of the higher education sector.
Resumo:
It has been shown that active control of locomotion increases accuracy and precision of nonvisual space perception, but psychological mechanisms of this enhancement are poorly understood. The present study explored a hypothesis that active control of locomotion enhances space perception by facilitating crossmodal interaction between visual and nonvisual spatial information. In an experiment, blindfolded participants walked along a linear path under one of the following two conditions: (1) They walked by themselves following a guide rope; and (2) they were led by an experimenter. Subsequently, they indicated the walked distance by tossing a beanbag to the origin of locomotion. The former condition gave participants greater control of their locomotion, and thus represented a more active walking condition. In addition, before each trial, half the participants viewed the room in which they performed the distance perception task. The other half remained blindfolded throughout the experiment. Results showed that although the room was devoid of any particular cues for walked distances, visual knowledge of the surroundings improved the precision of nonvisual distance perception. Importantly, however, the benefit of preview was observed only when participants walked more actively. This indicates that active control of locomotion allowed participants to better utilize their visual memory of the environment for perceiving nonvisually encoded distance, suggesting that active control of locomotion served as a catalyst for integrating visual and nonvisual information to derive spatial representations of higher quality.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
Scramjet-based launch systems offer considerable promise for safe, reliable and economical access to space. A general Scramjets introduction is first provided, followed by the specifics of Australian Scramjet Research and the recent progress in inlet-injection radical-farming scramjets as part of the SCRAMSPACE program. Through both flight and ground tests, leveraging Australias world leadership in scramjet R&D, the SCRAMSPACE project is designed to answer key scientific and technological questions and build an industry-ready talent pool for a future Australian space industry. An extensive descriptions of all phases of the development of the SCRAMSPACE I scramjet-powered free-flight experiment are described in these lecture notes.