398 resultados para Rumen -- Microbiology
Resumo:
The Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation.
Resumo:
The differences between Escherichia coli strains associated with symptomatic and asymptomatic urinary tract infections (UTIs) remain to be properly determined. Here we examined the prevalence of plasmid types and bacteriocins, as well as genetic relatedness, in a defined collection of E. coli strains that cause UTIs. Comparative analysis identified a subgroup of strains with a high number of virulence genes (VGs) and microcins M/H47. We also identified associations between microcin genes, VGs, and specific plasmid types.
Resumo:
Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of UPEC are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. The genome-sequenced prototype UPEC strain CFT073 contains 11 putative AT-encoding genes. In this study, we have performed a detailed molecular characterization of two closely related AT adhesins from CFT073: UpaB (c0426) and UpaC (c0478). PCR screening revealed that the upaB and upaC AT-encoding genes are common in E. coli. The upaB and upaC genes were cloned and characterized in a recombinant E. coli K-12 strain background. This revealed that they encode proteins located at the cell surface but possess different functional properties: UpaB mediates adherence to several ECM proteins, while UpaC expression is associated with increased biofilm formation. In CFT073, upaB is expressed while upaC is transcriptionally repressed by the global regulator H-NS. In competitive colonization experiments employing the mouse UTI model, CFT073 significantly outcompeted its upaB (but not upaC) isogenic mutant strain in the bladder. This attenuated phenotype was also observed in single-challenge experiments, where deletion of the upaB gene in CFT073 significantly reduced early colonization of the bladder.
Resumo:
The molecular mechanisms that define asymptomatic bacteriuria (ABU) Escherichia coli colonization of the human urinary tract remain to be properly elucidated. Here, we utilize ABU E. coli strain 83972 as a model to dissect the contribution of siderophores to iron acquisition, growth, fitness, and colonization of the urinary tract. We show that E. coli 83972 produces enterobactin, salmochelin, aerobactin, and yersiniabactin and examine the role of these systems using mutants defective in siderophore biosynthesis and uptake. Enterobactin and aerobactin contributed most to total siderophore activity and growth in defined iron-deficient medium. No siderophores were detected in an 83972 quadruple mutant deficient in all four siderophore biosynthesis pathways; this mutant did not grow in defined iron-deficient medium but grew in iron-limited pooled human urine due to iron uptake via the FecA ferric citrate receptor. In a mixed 1:1 growth assay with strain 83972, there was no fitness disadvantage of the 83972 quadruple biosynthetic mutant, demonstrating its capacity to act as a “cheater” and utilize siderophores produced by the wild-type strain for iron uptake. An 83972 enterobactin/salmochelin double receptor mutant was outcompeted by 83972 in human urine and the mouse urinary tract, indicating a role for catecholate receptors in urinary tract colonization.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.
Resumo:
Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.
Resumo:
Establishment of asymptomatic bacteriuria (ABU) with Escherichia coli 83972 is a viable prophylactic alternative to antibiotic therapy for the prevention of recurrent bacterial urinary tract infection in humans. Approximately 2 x 108 viable E. coli 83972 cells were introduced into the bladder of six healthy female dogs via a sterile urinary catheter. The presence of pyuria, depression, stranguria, pollakiuria and haematuria was documented for 6 weeks and urinalysis and aerobic bacterial cultures were performed every 24–72 h. Pyuria was present in all dogs on day 1 post-inoculation and 4/6 dogs (67%) had a positive urine culture on this day. Duration of colonization ranged from 0 to 10 days (median 4 days). Four dogs were re-inoculated on day 20. Duration of colonization following the second inoculation ranged from 1 to 3 days. No dog suffered pyrexia or appeared systemically unwell but all dogs initially exhibited mild pollakiuria and a small number displayed gross haematuria and/or stranguria. By day 3 of each trial all clinical signs had resolved. Persistent bacteriuria was not achieved in any dog but two dogs were colonized for 10 days following a single inoculation. Further research is required to determine whether establishment of ABU in dogs with recurrent urinary tract infection is a viable alternative to repeated doses of antimicrobial agents.
Resumo:
Background Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii. Results Phylogenetic analysis of the type 3 fimbrial genes (mrkABCD) from 39 strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae MGH78578. The E. coli and K. pneumoniae mrkABCD gene sequences clustered together in two distinct clades, supporting previous evidence for the occurrence of inter-genera lateral gene transfer. All of the strains examined caused type 3 fimbriae mediated agglutination of tannic acid treated human erythrocytes despite sequence variation in the mrkD-encoding adhesin gene. Type 3 fimbriae deletion mutants were constructed in 13 representative strains and were used to demonstrate a direct role for type 3 fimbriae in biofilm formation. Conclusions The expression of functional type 3 fimbriae is common to many Gram-negative pathogens that cause CAUTI and is strongly associated with biofilm growth. Our data provides additional evidence for the spread of type 3 fimbrial genes by lateral gene transfer. Further work is now required to substantiate the clade structure reported here by examining more strains as well as other bacterial genera that make type 3 fimbriae and cause CAUTI.
Resumo:
Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.
Resumo:
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli being responsible for >80% of all cases. Asymptomatic bacteriuria (ABU) occurs when bacteria colonize the urinary tract without causing clinical symptoms and can affect both catheterized patients (catheter-associated ABU [CA-ABU]) and noncatheterized patients. Here, we compared the virulence properties of a collection of ABU and CA-ABU nosocomial E. coli isolates in terms of antibiotic resistance, phylogenetic grouping, specific UTI-associated virulence genes, hemagglutination characteristics, and biofilm formation. CA-ABU isolates were similar to ABU isolates with regard to the majority of these characteristics; exceptions were that CA-ABU isolates had a higher prevalence of the polysaccharide capsule marker genes kpsMT II and kpsMT K1, while more ABU strains were capable of mannose-resistant hemagglutination. To examine biofilm growth in detail, we performed a global gene expression analysis with two CA-ABU strains that formed a strong biofilm and that possessed a limited adhesin repertoire. The gene expression profile of the CA-ABU strains during biofilm growth showed considerable overlap with that previously described for the prototype ABU E. coli strain, 83972. This is the first global gene expression analysis of E. coli CA-ABU strains. Overall, our data suggest that nosocomial ABU and CA-ABU E. coli isolates possess similar virulence profiles.
Resumo:
Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest β-helix as the predominant structure in the large N-terminal passenger (α) domain and a 12-strand β-barrel for the C-terminal β-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.
Resumo:
Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.
Resumo:
If DNA is the information of life, then proteins are the machines of life — but they must be assembled and correctly folded to function. A key step in the protein-folding pathway is the introduction of disulphide bonds between cysteine residues in a process called oxidative protein folding. Many bacteria use an oxidative protein-folding machinery to assemble proteins that are essential for cell integrity and to produce virulence factors. Although our current knowledge of this machinery stems largely from Escherichia coli K-12, this view must now be adjusted to encompass the wider range of disulphide catalytic systems present in bacteria.
Resumo:
In asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract without provoking symptoms. Here, we compared the virulence properties of a collection of ABU Escherichia coli strains to cystitis and pyelonephritis strains. Specific urinary tract infection (UTI)-associated virulence genes, hemagglutination characteristics, siderophore production, hemolysis, biofilm formation, and the ability of strains to adhere to and induce cytokine responses in epithelial cells were analyzed. ABU strains were phylogenetically related to strains that cause symptomatic UTI. However, the virulence properties of the ABU strains were variable and dependent on a combination of genotypic and phenotypic factors. Most ABU strains adhered poorly to epithelial cells; however, we also identified a subgroup of strongly adherent strains that were unable to stimulate an epithelial cell IL-6 cytokine response. Poor immune activation may represent one mechanism whereby ABU E. coli evade immune detection after the establishment of bacteriuria.