412 resultados para Road seeds
Resumo:
In recent decades, highly motorised countries, such as Australia, have witnessed significant improvements in population health through reductions in fatalities and injuries from road traffic crashes. In Australia, concerted efforts have been made to reduce the road trauma burden since road fatalities reached their highest level in in the early 1970s. Since that time, many improvements have been made drawing on various disciplines to reduce the trauma burden (e.g., road and vehicle design, road user education, traffic law enforcement practices and enforcement technologies). While road fatalities have declined significantly since the mid-1970s, road trauma remains a serious public health concern in Australia. China has recently become the largest car market in the world (Ma, Li, Zhou, Duan, & Bishai, 2012). This rapid motorisation has been accompanied by substantial expansion of the road network as well as a large road trauma burden. Road traffic injuries are a major cause of death in China, reported as accounting for one third of all injury-deaths between 2002 and 2006 (Ma et al., 2012). In common with Australia, China has experienced a reported decline in fatalities since 2002 (see Hu, Wen & Baker, 2008). However, there remains a strong need for action in this area as rates of motorisation continue to climb in China. In Australia, a wide range of organisations have contributed to the improvements in road safety including government agencies, professional organisations, advocacy groups and research centres. In particular, Australia has several highly regarded and multi-disciplinary, university-based research centres that work across a range of road safety fields, including engineering, intelligent transportation systems, the psychology of road user behaviour, and traffic law enforcement. Besides conducting high-quality research, these centres fulfil an important advocacy role in promoting safer road use and facilitating collaborations with government and other agencies, at both the national and international level. To illustrate the role of these centres, an overview will be provided of the Centre for Accident Research and Road Safety-Queensland (CARRS-Q), which was established in 1996 and has gone on to become a recognised world-leader in road safety and injury prevention research. The Centre’s research findings are used to provide evidence-based recommendations to government and have directly contributed to promoting safer road use in Australia. Since 2006, CARRS-Q has also developed strong collaborative links with various universities and organisations in China to assist in building understanding, connections and capacity to assist in reducing the road trauma burden. References Hu, G., Wen, M., Baker, T. D., & Baker, S. P. (2008). Road-traffic deaths in China, 1985–2005: threat and opportunity. Injury Prevention, 14, 149-153. Ma, S., Li, Q., Zhou, M., Duan, L., & Bishai, D. (2012). Road Traffic Injury in China: A Review of National Data Sources. Traffic Injury Prevention, 13(S1), 57-63.
Resumo:
The World Health Organization identifies road trauma as a major public health issue in every country; most notably among low-to-middle income countries. More than 90% of all road fatalities occur in these countries, although they have only 48% of all registered vehicles [1]. Unprecedented focus has been placed on reducing the global road trauma burden through the United Nations Decade of Action for Road Safety (2011-2020). China is rapidly transitioning from a nation of bicycle riders and pedestrians to one where car ownership and use is increasing. This transition presents important public health, mobility, and safety challenges. Rapid motorisation has resulted in an increased road trauma burden, shouldered disproportionately among the population. Vulnerable road users (bicyclists, pedestrians, and motorcyclists) are of particular concern, representing 70% of all road-related fatalities [1]. Furthermore, those at greatest risk of sustaining a crash-related disability are: male, older, less educated, and earning a lower income [2] and residing in urban areas [3], with higher fatality rates in north-western poorer provinces [3]. Speeding is a key factor in road crashes in China [1, 4] and is one of two risk factors targeted in the Bloomberg Philanthropies-funded Global Road Safety Program operating in two Chinese cities over five year [5] to which the first author has provided expert advice. However, little evidence exists to help understand the factors underpinning speeding behaviour. Previous research conducted by the authors in Beijing and Hangzhou explored personal, social, and legal factors relating to speeding to assist in better understanding the motivations for non-compliance with speed limits. Qualitative and quantitative research findings indicated that speeding is relatively common, including self-reported travel speeds of greater than 30 km/hour above posted speed limits [6], and that the road safety laws and enforcement practices may, in some circumstances, contribute to this [7]. Normative factors were also evident; the role of friends, family members and driving instructors were influential. Additionally, using social networks to attempt to avoid detection and penalty was reported, thereby potentially reinforcing community perceptions that speeding is acceptable [8, 9]. The authors established strong collaborative links with the Chinese Academy of Sciences and Zhejiang Police College to conduct this research. The first author has worked in both institutions for extended time periods and recognises that research must include an understanding of culturally-relevant issues if road safety is to improve in China. Future collaborations to assist in enhancing our understanding of such issues are welcomed. References [1] World Health Organization. (2009). Global status report on road safety: Time for action; Geneva. [2] Chen, H., Du, W., & Li, N. (2013). The socioeconomic inequality in traffic-related disability among Chinese adults: the application of concentration index. Accident Analysis & Prevention, 55(101-106). [3] Wang, S. Y., Li, Y. H., Chi, G. B., Xiao, S. Y., Ozanne-Smith, J., Stevenson, M., & Phillips, M. (2008). Injury-related fatalities in China: an under-recognised public-health problem. The Lancet (British edition), 372(9651), 1765-1773. [4] He, J., King, M. J., Watson, B., Rakotonirainy, A., & Fleiter, J. J. (2013). Speed enforcement in China: National, provincial and city initiatives and their success. Accident Analysis & Prevention, 50, 282-288. [5] Bhalla, K., Li, Q., Duan, L., Wang, Y., Bishai, D., & Hyder, A. A. (2013). The prevalence of speeding and drink driving in two cities in China: a mid project evaluation of ongoing road safety interventions. Injury, 44, 49-56. doi:10.1016/S0020-1383(13)70213-4. [6] Fleiter, J. J., Watson, B., & Lennon, A. (2013). Awareness of risky behaviour among Chinese drivers. Peer-reviewed paper presented at 23rd Canadian Multidisciplinary Road Safety Conference, Montréal, Québec. [7] Fleiter, J. J., Watson, B., Lennon, A., King, M. J., & Shi, K. (2009). Speeding in Australia and China: A comparison of the influence of legal sanctions and enforcement practices on car drivers. Peer-reviewd paper presented at Australasian Road Safety Research Policing Education Conference, Sydney. [8] Fleiter, J. J., Watson, B., Lennon, A., King, M. J., & Shi, K. (2011). Social influences on drivers in China. Journal of the Australasian College of Road Safety, 22(2), 29-36. [9] Fleiter, J. J., Watson, B., Guan, M. Q., Ding, J. Y., & Xu, C. (2013). Characteristics of Chinese Drivers Attending a Mandatory Training Course Following Licence Suspension. Peer-reviewed paper presented at Road Safety on Four Continents, Beijing, China.
Resumo:
Young novice drivers are at considerable risk of injury on the road. Their behaviour appears vulnerable to the social influence of their parents and friends. The nature and mechanisms of parent and peer influence on young novice driver (16–25 years) behaviour was explored via small group interviews (n = 21) and two surveys (n1 = 1170, n2 = 390) to inform more effective young driver countermeasures. Parental and peer influence occurred in preLicence, Learner, and Provisional (intermediate) periods. Pre-Licence and unsupervised Learner drivers reported their parents were less likely to punish risky driving (e.g., speeding). These drivers were more likely to imitate their parents and reported their parents were also risky drivers. Young novice drivers who experienced or expected social punishments from peers, including ‘being told off’ for risky driving, reported less riskiness. Conversely drivers who experienced or expected social rewards such as being ‘cheered on’ by friends – who were also more risky drivers – reported more risky driving including crashes and offences. Interventions enhancing positive influence and curtailing negative influence may improve road safety outcomes not only for young novice drivers, but for all persons who share the road with them. Parent-specific interventions warrant further development and evaluation including: modelling safe driving behaviour by parents; active monitoring of driving during novice licensure; and sharing the family vehicle during the intermediate phase. Peer-targeted interventions including modelling of safe driving behaviour and attitudes; minimisation of social reinforcement and promotion of social sanctions for risky driving also need further development and evaluation.
Resumo:
Road collisions negatively affect the lives of hundreds of Canadians per year. Unfortunately, safety has been typically neglected from management systems. It is common to find that a great deal of effort has been devoted to develop and implement systems capable of achieving and sustaining good levels of condition. It is relatively recent that road safety has become an important objective. Managing a network of roads is not an easy task; it requires long, medium and short term plans to maintain, rehabilitate and upgrade aging assets, reduce and mitigate accident exposure, likelihood and severity. This thesis presents a basis for incorporating road safety into road management systems; two case studies were developed; one limited by available data and another from sufficient information. A long term analysis was used to allocate improvements for condition and safety of roads and bridges, at the network level. It was confirmed that a safety index could be used to obtain a first cut model; meanwhile potential for improvement which is a difference between observed and predicted number of accidents was capable of capturing the degree of safety of individual segments. It was found that the completeness of the system resulted in savings because of the economies obtained from trade-off optimization. It was observed that safety improvements were allocated at the beginning of the analysis in order to reduce the extent of issues, which translated into a systematic reduction of potential for improvement up to a point of near constant levels, which were hypothesized to relate to those unavoidable collisions from human error or vehicle failure.
Resumo:
This paper presents a performance-based optimisation approach for conducting trade-off analysis between safety (roads) and condition (bridges and roads). Safety was based on potential for improvement (PFI). Road condition was based on surface distresses and bridge condition was based on apparent age per subcomponent. The analysis uses a non-monetised optimisation that expanded upon classical Pareto optimality by observing performance across time. It was found that achievement of good results was conditioned by the availability of early age treatments and impacted by a frontier effect preventing the optimisation algorithm from realising of the long-term benefits of deploying actions when approaching the end of the analysis period. A disaggregated bridge condition index proved capable of improving levels of service in bridge subcomponents.
Resumo:
While the philosophical motivation behind Civil Infrastructure Management Systems is to achieve optimal level of service at a minimum cost, the allocation of scarce resources among competing alternatives is still a matter of debate. It appears to be widely accepted that results from tradeoff analysis can be measured by the degree of accomplishment of the objectives. Road management systems not only deal with different asset types but also with conflicting objectives. This paper presents a case study of lifecycle optimization with tradeoff analysis for a road corridor in New Brunswick. Objectives of the study included condition of bridge and roads and road safety. A road safety index was created based on potential for improvement. Road condition was based on roughness, rutting and cracking. Initial results show lack of sustainability in bridge performance. Therefore, bridges where broken by components: deck, superstructure and substructure. Visual inspections, in addition to construction age of each bridge, were combined to generate a surrogate apparent age. Two life cycle analysis were conducted; one aimed to minimize overall cost while achieving sustainable results and another one purely for optimization. -used to identify required levels of budget. Such analyses were used to identify the minimum required budget and to demonstrate that with the same amount of money it was possible to achieve better levels of performance. Dominance and performance driven criteria were combined to identify and select an optimal result. It was found that achievement of optimally sustained results is conditioned by the availability of treatments for all asset classes at across their life spans. For the case study a disaggregated bridge condition index was introduced to the original algorithm to attempt to achieve sustainability in all bridges components, however lack of early stage treatments for substructures produce declining trends for such a component.
Resumo:
Flexible design practices broadly permit that design values outside the normal range can be accepted as appropriate for a site-specific context providing that the risk is evaluated and is tolerable. Execution of flexible design demands some evaluation of risk. In restoration projects, it may be the case that an immovable object exists within the zone of the expected deflection of a road safety barrier system. Only by design exception can the situation be determined to be acceptable. However, the notion of using flexible design for road safety barrier design is not well developed. The existence of a diminishing return relationship between safety benefits and provision of increased clear zone has been established previously. This paper proposes that a similar rationale might reasonably apply for the deflection zone behind road safety barriers and describes how the risk associated with road safety barriers might be quantified in order that defensible road safety barrier design can exist below the lower bounds of normal design standards. As such, the methodology described in this paper may provide some basis to enable road authorities to make informed design decisions, particularly for restoration, or “Brownfield”, projects.
Resumo:
A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
The World Health Organization (WHO) identifies road trauma as a major public health issue in all countries, though most notably among low-to-middle income countries and particularly those experiencing rapid motorisation, such as China. As China transitions from a nation of bicycle riders and pedestrians to one where car ownership is increasingly desired, there is need to address the accompanying social policy challenges. With this increased motorisation has come an increased road trauma burden, shouldered disproportionately among the population. Vulnerable road users (i.e., pedestrians, cyclists, motorcyclists) are of primary concern because they are most frequently killed in road crashes, representing approximately 70% of all Chinese road-related fatalities. The aim of this paper is to summarise the scale of the road trauma burden, highlight the disparity of this burden across the Chinese population, and discuss the related social policy implications in dealing with the impact of deaths and of otherwise healthy lives diminished by injury and disability. Future research priorities are also discussed and include the need to strive to provide detailed information on the level of inequity of the road trauma burden across the population and identify appropriate social supports and healthcare services required, both preventative and post-crash, so these can be developed and implemented throughout China.